These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
342 related articles for article (PubMed ID: 20657066)
41. Association between meteorological factors and bacillary dysentery incidence in Chaoyang city, China: an ecological study. Zhao Y; Zhu Y; Zhu Z; Qu B BMJ Open; 2016 Dec; 6(12):e013376. PubMed ID: 27940632 [TBL] [Abstract][Full Text] [Related]
42. Time series analysis of rubella incidence in Chongqing, China using SARIMA and BPNN mathematical models. Chen Q; Zhao H; Qiu H; Wang Q; Zeng D; Ye M J Infect Dev Ctries; 2022 Aug; 16(8):1343-1350. PubMed ID: 36099379 [TBL] [Abstract][Full Text] [Related]
43. PREDICTING CLINICALLY DIAGNOSED DYSENTERY INCIDENCE OBTAINED FROM MONTHLY CASE REPORTING BASED ON METEOROLOGICAL VARIABLES IN DALIAN, LIAONING PROVINCE, CHINA, 2005-2011 USING A DEVELOPED MODEL. An Q; Yao W; Wu J Southeast Asian J Trop Med Public Health; 2015 Mar; 46(2):285-95. PubMed ID: 26513932 [TBL] [Abstract][Full Text] [Related]
44. [Influence of humidex on incidence of bacillary dysentery in Hefei: a time-series study]. Zhang H; Zhao KF; He RX; Zhao DS; Xie MY; Wang SS; Bai LJ; Cheng Q; Zhang YW; Su H Zhonghua Liu Xing Bing Xue Za Zhi; 2017 Nov; 38(11):1523-1527. PubMed ID: 29141342 [No Abstract] [Full Text] [Related]
45. Comparative study of SARIMA and NARX models in predicting the incidence of schistosomiasis in China. Yu XY; Chen Z; Qi LX Math Biosci Eng; 2019 Mar; 16(4):2266-2276. PubMed ID: 31137211 [TBL] [Abstract][Full Text] [Related]
46. A New Hybrid Model Using an Autoregressive Integrated Moving Average and a Generalized Regression Neural Network for the Incidence of Tuberculosis in Heng County, China. Wei W; Jiang J; Gao L; Liang B; Huang J; Zang N; Ning C; Liao Y; Lai J; Yu J; Qin F; Chen H; Su J; Ye L; Liang H Am J Trop Med Hyg; 2017 Sep; 97(3):799-805. PubMed ID: 28820678 [TBL] [Abstract][Full Text] [Related]
47. Trend analysis and prediction of gonorrhea in mainland China based on a hybrid time series model. Wang Z; Wang Y; Zhang S; Wang S; Xu Z; Feng Z BMC Infect Dis; 2024 Jan; 24(1):113. PubMed ID: 38253998 [TBL] [Abstract][Full Text] [Related]
48. Forecasting incidence of dengue in Rajasthan, using time series analyses. Bhatnagar S; Lal V; Gupta SD; Gupta OP Indian J Public Health; 2012; 56(4):281-5. PubMed ID: 23354138 [TBL] [Abstract][Full Text] [Related]
49. [Analysis on incidence of bacillary dysentery in Jinan municipality from 1951 to 2005]. Lü Y; Xu HR; Yu QY; Bian XF Zhonghua Yu Fang Yi Xue Za Zhi; 2008 May; 42(5):342-4. PubMed ID: 18844085 [TBL] [Abstract][Full Text] [Related]
50. Forecasting daily emergency department visits using calendar variables and ambient temperature readings. Marcilio I; Hajat S; Gouveia N Acad Emerg Med; 2013 Aug; 20(8):769-77. PubMed ID: 24033619 [TBL] [Abstract][Full Text] [Related]
51. Time-series modelling and forecasting of hand, foot and mouth disease cases in China from 2008 to 2018. Tian CW; Wang H; Luo XM Epidemiol Infect; 2019 Jan; 147():e82. PubMed ID: 30868999 [TBL] [Abstract][Full Text] [Related]
52. Epidemiology and time series analysis of human brucellosis in Tebessa province, Algeria, from 2000 to 2020. Akermi SE; L'Hadj M; Selmane S J Res Health Sci; 2022 Mar; 22(1):e00544. PubMed ID: 36511254 [TBL] [Abstract][Full Text] [Related]
53. Forecasting the incidence of tuberculosis in China using the seasonal auto-regressive integrated moving average (SARIMA) model. Mao Q; Zhang K; Yan W; Cheng C J Infect Public Health; 2018; 11(5):707-712. PubMed ID: 29730253 [TBL] [Abstract][Full Text] [Related]
54. Application of a hybrid model in predicting the incidence of tuberculosis in a Chinese population. Li Z; Wang Z; Song H; Liu Q; He B; Shi P; Ji Y; Xu D; Wang J Infect Drug Resist; 2019; 12():1011-1020. PubMed ID: 31118707 [No Abstract] [Full Text] [Related]
55. Short-term traffic speed prediction under different data collection time intervals using a SARIMA-SDGM hybrid prediction model. Song Z; Guo Y; Wu Y; Ma J PLoS One; 2019; 14(6):e0218626. PubMed ID: 31242226 [TBL] [Abstract][Full Text] [Related]
56. Forecasting seasonal influenza activity in Canada-Comparing seasonal Auto-Regressive integrated moving average and artificial neural network approaches for public health preparedness. Orang A; Berke O; Poljak Z; Greer AL; Rees EE; Ng V Zoonoses Public Health; 2024 May; 71(3):304-313. PubMed ID: 38331569 [TBL] [Abstract][Full Text] [Related]
57. Spatiotemporal Characteristics of Bacillary Dysentery from 2005 to 2017 in Zhejiang Province, China. Yan C; Chen Y; Miao Z; Qin S; Gu H; Cai J Int J Environ Res Public Health; 2018 Aug; 15(9):. PubMed ID: 30149494 [TBL] [Abstract][Full Text] [Related]
58. A Combined Model of SARIMA and Prophet Models in Forecasting AIDS Incidence in Henan Province, China. Luo Z; Jia X; Bao J; Song Z; Zhu H; Liu M; Yang Y; Shi X Int J Environ Res Public Health; 2022 May; 19(10):. PubMed ID: 35627447 [TBL] [Abstract][Full Text] [Related]
59. SARFIMA model prediction for infectious diseases: application to hemorrhagic fever with renal syndrome and comparing with SARIMA. Qi C; Zhang D; Zhu Y; Liu L; Li C; Wang Z; Li X BMC Med Res Methodol; 2020 Sep; 20(1):243. PubMed ID: 32993517 [TBL] [Abstract][Full Text] [Related]
60. Seasonality and Trend Forecasting of Tuberculosis Prevalence Data in Eastern Cape, South Africa, Using a Hybrid Model. Azeez A; Obaromi D; Odeyemi A; Ndege J; Muntabayi R Int J Environ Res Public Health; 2016 Jul; 13(8):. PubMed ID: 27472353 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]