BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

85 related articles for article (PubMed ID: 20657190)

  • 1. Fixation and locomotor activity are impaired by inducing tetanus toxin expression in adult Drosophila brain.
    Xiong Y; Lv H; Gong Z; Liu L
    Fly (Austin); 2010; 4(3):194-203. PubMed ID: 20657190
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Targeted expression of tetanus toxin reveals sets of neurons involved in larval locomotion in Drosophila.
    Suster ML; Martin JR; Sung C; Robinow S
    J Neurobiol; 2003 May; 55(2):233-46. PubMed ID: 12672020
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Refining GAL4-driven transgene expression in Drosophila with a GAL80 enhancer-trap.
    Suster ML; Seugnet L; Bate M; Sokolowski MB
    Genesis; 2004 Aug; 39(4):240-5. PubMed ID: 15286996
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mushroom bodies enhance initial motor activity in Drosophila.
    Serway CN; Kaufman RR; Strauss R; de Belle JS
    J Neurogenet; 2009; 23(1-2):173-84. PubMed ID: 19145515
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Postsynaptic expression of tetanus toxin light chain blocks synaptogenesis in Drosophila.
    Baines RA; Robinson SG; Fujioka M; Jaynes JB; Bate M
    Curr Biol; 1999 Nov; 9(21):1267-70. PubMed ID: 10556094
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cell types and coincident synapses in the ellipsoid body of Drosophila.
    Martín-Peña A; Acebes A; Rodríguez JR; Chevalier V; Casas-Tinto S; Triphan T; Strauss R; Ferrús A
    Eur J Neurosci; 2014 May; 39(10):1586-601. PubMed ID: 24605774
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A large-scale behavioral screen to identify neurons controlling motor programs in the Drosophila brain.
    Flood TF; Gorczyca M; White BH; Ito K; Yoshihara M
    G3 (Bethesda); 2013 Oct; 3(10):1629-37. PubMed ID: 23934998
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Selective elimination/RNAi silencing of FMRF-related peptides and their receptors decreases the locomotor activity in Drosophila melanogaster.
    Kiss B; Szlanka T; Zvara Á; Žurovec M; Sery M; Kakaš Š; Ramasz B; Hegedűs Z; Lukacsovich T; Puskás L; Fónagy A; Kiss I
    Gen Comp Endocrinol; 2013 Sep; 191():137-45. PubMed ID: 23770020
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Behavioral responses to odorants in drosophila require nervous system expression of the beta integrin gene myospheroid.
    Bhandari P; Gargano JW; Goddeeris MM; Grotewiel MS
    Chem Senses; 2006 Sep; 31(7):627-39. PubMed ID: 16763085
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Distinct functions of neuronal synaptobrevin in developing and mature fly photoreceptors.
    Rister J; Heisenberg M
    J Neurobiol; 2006 Oct; 66(12):1271-84. PubMed ID: 16967508
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Oviduct contraction in Drosophila is modulated by a neural network that is both, octopaminergic and glutamatergic.
    Rodríguez-Valentín R; López-González I; Jorquera R; Labarca P; Zurita M; Reynaud E
    J Cell Physiol; 2006 Oct; 209(1):183-98. PubMed ID: 16826564
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Targeted gene expression in Drosophila dopaminergic cells using regulatory sequences from tyrosine hydroxylase.
    Friggi-Grelin F; Coulom H; Meller M; Gomez D; Hirsh J; Birman S
    J Neurobiol; 2003 Mar; 54(4):618-27. PubMed ID: 12555273
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Neuropeptides in the Drosophila central complex in modulation of locomotor behavior.
    Kahsai L; Martin JR; Winther AM
    J Exp Biol; 2010 Jul; 213(Pt 13):2256-65. PubMed ID: 20543124
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mutations affecting the cAMP transduction pathway disrupt the centrophobism behavior.
    Lebreton S; Martin JR
    J Neurogenet; 2009; 23(1-2):225-34. PubMed ID: 19306211
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of the dCaMKII-GAL4 driver line whose expression is controlled by the Drosophila Ca2+/calmodulin-dependent protein kinase II promoter.
    Takamatsu Y; Nakagoshi H; Rachidi M; Lopes C; Nishida Y; Ohsako S
    Cell Tissue Res; 2002 Nov; 310(2):237-52. PubMed ID: 12397378
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genomic mapping and expression patterns of C380, OK6 and D42 enhancer trap lines in the larval nervous system of Drosophila.
    Sanyal S
    Gene Expr Patterns; 2009 Jun; 9(5):371-80. PubMed ID: 19602393
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Targeted expression of tetanus neurotoxin interferes with behavioral responses to sensory input in Drosophila.
    Keller A; Sweeney ST; Zars T; O'Kane CJ; Heisenberg M
    J Neurobiol; 2002 Feb; 50(3):221-33. PubMed ID: 11810637
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Decreased dendritic spine density as a consequence of tetanus toxin light chain expression in single neurons in vivo.
    Heimer-McGinn V; Murphy AC; Kim JC; Dymecki SM; Young PW
    Neurosci Lett; 2013 Oct; 555():36-41. PubMed ID: 24035894
    [TBL] [Abstract][Full Text] [Related]  

  • 19. GAL4/UAS-WGA system as a powerful tool for tracing Drosophila transsynaptic neural pathways.
    Tabuchi K; Sawamoto K; Suzuki E; Ozaki K; Sone M; Hama C; Tanifuji-Morimoto T; Yuasa Y; Yoshihara Y; Nose A; Okano H
    J Neurosci Res; 2000 Jan; 59(1):94-9. PubMed ID: 10658189
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Neuronal death in Drosophila triggered by GAL4 accumulation.
    Rezával C; Werbajh S; Ceriani MF
    Eur J Neurosci; 2007 Feb; 25(3):683-94. PubMed ID: 17313569
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.