These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
297 related articles for article (PubMed ID: 2065746)
1. Cortical areas and the selection of movement: a study with positron emission tomography. Deiber MP; Passingham RE; Colebatch JG; Friston KJ; Nixon PD; Frackowiak RS Exp Brain Res; 1991; 84(2):393-402. PubMed ID: 2065746 [TBL] [Abstract][Full Text] [Related]
2. Cerebral structures participating in motor preparation in humans: a positron emission tomography study. Deiber MP; Ibañez V; Sadato N; Hallett M J Neurophysiol; 1996 Jan; 75(1):233-47. PubMed ID: 8822554 [TBL] [Abstract][Full Text] [Related]
3. Positron emission tomography study of voluntary saccadic eye movements and spatial working memory. Sweeney JA; Mintun MA; Kwee S; Wiseman MB; Brown DL; Rosenberg DR; Carl JR J Neurophysiol; 1996 Jan; 75(1):454-68. PubMed ID: 8822570 [TBL] [Abstract][Full Text] [Related]
4. Cortical function in amyotrophic lateral sclerosis. A positron emission tomography study. Kew JJ; Leigh PN; Playford ED; Passingham RE; Goldstein LH; Frackowiak RS; Brooks DJ Brain; 1993 Jun; 116 ( Pt 3)():655-80. PubMed ID: 8513396 [TBL] [Abstract][Full Text] [Related]
5. Dorsal premotor cortex and conditional movement selection: A PET functional mapping study. Grafton ST; Fagg AH; Arbib MA J Neurophysiol; 1998 Feb; 79(2):1092-7. PubMed ID: 9463464 [TBL] [Abstract][Full Text] [Related]
6. Comparison of brain activity during different types of proprioceptive inputs: a positron emission tomography study. Radovanovic S; Korotkov A; Ljubisavljevic M; Lyskov E; Thunberg J; Kataeva G; Danko S; Roudas M; Pakhomov S; Medvedev S; Johansson H Exp Brain Res; 2002 Apr; 143(3):276-85. PubMed ID: 11889505 [TBL] [Abstract][Full Text] [Related]
7. Impaired mesial frontal and putamen activation in Parkinson's disease: a positron emission tomography study. Playford ED; Jenkins IH; Passingham RE; Nutt J; Frackowiak RS; Brooks DJ Ann Neurol; 1992 Aug; 32(2):151-61. PubMed ID: 1510355 [TBL] [Abstract][Full Text] [Related]
8. Self-initiated versus externally triggered movements. I. An investigation using measurement of regional cerebral blood flow with PET and movement-related potentials in normal and Parkinson's disease subjects. Jahanshahi M; Jenkins IH; Brown RG; Marsden CD; Passingham RE; Brooks DJ Brain; 1995 Aug; 118 ( Pt 4)():913-33. PubMed ID: 7655888 [TBL] [Abstract][Full Text] [Related]
9. The role of cerebral cortex in the generation of voluntary saccades: a positron emission tomographic study. Fox PT; Fox JM; Raichle ME; Burde RM J Neurophysiol; 1985 Aug; 54(2):348-69. PubMed ID: 3875696 [TBL] [Abstract][Full Text] [Related]
10. Regional cerebral blood flow during voluntary arm and hand movements in human subjects. Colebatch JG; Deiber MP; Passingham RE; Friston KJ; Frackowiak RS J Neurophysiol; 1991 Jun; 65(6):1392-401. PubMed ID: 1875248 [TBL] [Abstract][Full Text] [Related]
11. Frontal and parietal networks for conditional motor learning: a positron emission tomography study. Deiber MP; Wise SP; Honda M; Catalan MJ; Grafman J; Hallett M J Neurophysiol; 1997 Aug; 78(2):977-91. PubMed ID: 9307128 [TBL] [Abstract][Full Text] [Related]
12. Motor task difficulty and brain activity: investigation of goal-directed reciprocal aiming using positron emission tomography. Winstein CJ; Grafton ST; Pohl PS J Neurophysiol; 1997 Mar; 77(3):1581-94. PubMed ID: 9084621 [TBL] [Abstract][Full Text] [Related]
13. Comparison of auditory, somatosensory, and visually instructed and internally generated finger movements: a PET study. Weeks RA; Honda M; Catalan MJ; Hallett M Neuroimage; 2001 Jul; 14(1 Pt 1):219-30. PubMed ID: 11525332 [TBL] [Abstract][Full Text] [Related]
14. Self-initiated versus externally triggered movements. II. The effect of movement predictability on regional cerebral blood flow. Jenkins IH; Jahanshahi M; Jueptner M; Passingham RE; Brooks DJ Brain; 2000 Jun; 123 ( Pt 6)():1216-28. PubMed ID: 10825359 [TBL] [Abstract][Full Text] [Related]
15. The effect of movement frequency on cerebral activation: a positron emission tomography study. Jenkins IH; Passingham RE; Brooks DJ J Neurol Sci; 1997 Oct; 151(2):195-205. PubMed ID: 9349676 [TBL] [Abstract][Full Text] [Related]
16. Simultaneous movements of upper and lower limbs are coordinated by motor representations that are shared by both limbs: a PET study. Ehrsson HH; Naito E; Geyer S; Amunts K; Zilles K; Forssberg H; Roland PE Eur J Neurosci; 2000 Sep; 12(9):3385-98. PubMed ID: 10998121 [TBL] [Abstract][Full Text] [Related]
17. Cortical activation in patients with functional hemispherectomy. Leonhardt G; Bingel U; Spiekermann G; Kurthen M; Müller S; Hufnagel A J Neurol; 2001 Oct; 248(10):881-8. PubMed ID: 11697526 [TBL] [Abstract][Full Text] [Related]
18. Impaired activation of the supplementary motor area in Parkinson's disease is reversed when akinesia is treated with apomorphine. Jenkins IH; Fernandez W; Playford ED; Lees AJ; Frackowiak RS; Passingham RE; Brooks DJ Ann Neurol; 1992 Dec; 32(6):749-57. PubMed ID: 1471865 [TBL] [Abstract][Full Text] [Related]
19. Activation of the ventral and mesial frontal cortex of the monkey by self-initiated movement tasks as revealed by positron emission tomography. Tsujimoto T; Ogawa M; Tsukada H; Kakiuchi T; Sasaki K Neurosci Lett; 1998 Dec; 258(2):117-20. PubMed ID: 9875541 [TBL] [Abstract][Full Text] [Related]
20. Both primary motor cortex and supplementary motor area play an important role in complex finger movement. Shibasaki H; Sadato N; Lyshkow H; Yonekura Y; Honda M; Nagamine T; Suwazono S; Magata Y; Ikeda A; Miyazaki M Brain; 1993 Dec; 116 ( Pt 6)():1387-98. PubMed ID: 8293277 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]