These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 20657656)

  • 1. Genome-wide scoring of positive and negative epistasis through decomposition of quantitative genetic interaction fitness matrices.
    Eronen VP; Lindén RO; Lindroos A; Kanerva M; Aittokallio T
    PLoS One; 2010 Jul; 5(7):e11611. PubMed ID: 20657656
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantitative maps of genetic interactions in yeast - comparative evaluation and integrative analysis.
    Lindén RO; Eronen VP; Aittokallio T
    BMC Syst Biol; 2011 Mar; 5():45. PubMed ID: 21435228
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Array-based synthetic genetic screens to map bacterial pathways and functional networks in Escherichia coli.
    Babu M; Gagarinova A; Emili A
    Methods Mol Biol; 2011; 781():99-126. PubMed ID: 21877280
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Data Imputation in Epistatic MAPs by Network-Guided Matrix Completion.
    Žitnik M; Zupan B
    J Comput Biol; 2015 Jun; 22(6):595-608. PubMed ID: 25658751
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Array-based synthetic genetic screens to map bacterial pathways and functional networks in Escherichia coli.
    Babu M; Gagarinova A; Greenblatt J; Emili A
    Methods Mol Biol; 2011; 765():125-53. PubMed ID: 21815091
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Predicting quantitative genetic interactions by means of sequential matrix approximation.
    Järvinen AP; Hiissa J; Elo LL; Aittokallio T
    PLoS One; 2008 Sep; 3(9):e3284. PubMed ID: 18818762
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improved functional overview of protein complexes using inferred epistatic relationships.
    Ryan C; Greene D; Guénolé A; van Attikum H; Krogan NJ; Cunningham P; Cagney G
    BMC Syst Biol; 2011 May; 5():80. PubMed ID: 21605386
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Functional regression method for whole genome eQTL epistasis analysis with sequencing data.
    Xu K; Jin L; Xiong M
    BMC Genomics; 2017 May; 18(1):385. PubMed ID: 28521784
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A quantitative analysis of monochromaticity in genetic interaction networks.
    Hsu CH; Wang TY; Chu HT; Kao CY; Chen KC
    BMC Bioinformatics; 2011; 12 Suppl 13(Suppl 13):S16. PubMed ID: 22372977
    [TBL] [Abstract][Full Text] [Related]  

  • 10. On the classification of epistatic interactions.
    Gao H; Granka JM; Feldman MW
    Genetics; 2010 Mar; 184(3):827-37. PubMed ID: 20026678
    [TBL] [Abstract][Full Text] [Related]  

  • 11. WISH-R- a fast and efficient tool for construction of epistatic networks for complex traits and diseases.
    Carmelo VAO; Kogelman LJA; Madsen MB; Kadarmideen HN
    BMC Bioinformatics; 2018 Jul; 19(1):277. PubMed ID: 30064383
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Trigenic Synthetic Genetic Array (τ-SGA) Technique for Complex Interaction Analysis.
    Kuzmin E; Andrews BJ; Boone C
    Methods Mol Biol; 2021; 2212():377-400. PubMed ID: 33733368
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A systematic survey of an intragenic epistatic landscape.
    Bank C; Hietpas RT; Jensen JD; Bolon DN
    Mol Biol Evol; 2015 Jan; 32(1):229-38. PubMed ID: 25371431
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Low-Rank and Sparse Matrix Decomposition for Genetic Interaction Data.
    Wang Y; Yang D; Deng M
    Biomed Res Int; 2015; 2015():573956. PubMed ID: 26273633
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthetic genetic array analysis for global mapping of genetic networks in yeast.
    Kuzmin E; Sharifpoor S; Baryshnikova A; Costanzo M; Myers CL; Andrews BJ; Boone C
    Methods Mol Biol; 2014; 1205():143-68. PubMed ID: 25213244
    [TBL] [Abstract][Full Text] [Related]  

  • 16. PEPIS: A Pipeline for Estimating Epistatic Effects in Quantitative Trait Locus Mapping and Genome-Wide Association Studies.
    Zhang W; Dai X; Wang Q; Xu S; Zhao PX
    PLoS Comput Biol; 2016 May; 12(5):e1004925. PubMed ID: 27224861
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Epistasis between beneficial mutations and the phenotype-to-fitness Map for a ssDNA virus.
    Rokyta DR; Joyce P; Caudle SB; Miller C; Beisel CJ; Wichman HA
    PLoS Genet; 2011 Jun; 7(6):e1002075. PubMed ID: 21655079
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nature-Inspired Multiobjective Epistasis Elucidation from Genome-Wide Association Studies.
    Li X; Zhang S; Wong KC
    IEEE/ACM Trans Comput Biol Bioinform; 2020; 17(1):226-237. PubMed ID: 29994485
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A strategy for extracting and analyzing large-scale quantitative epistatic interaction data.
    Collins SR; Schuldiner M; Krogan NJ; Weissman JS
    Genome Biol; 2006; 7(7):R63. PubMed ID: 16859555
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Learning epistatic gene interactions from perturbation screens.
    Elmes K; Schmich F; Szczurek E; Jenkins J; Beerenwinkel N; Gavryushkin A
    PLoS One; 2021; 16(7):e0254491. PubMed ID: 34255784
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.