BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 20657831)

  • 1. Do larval supply and recruitment vary among chemosynthetic environments of the deep sea?
    Metaxas A; Kelly NE
    PLoS One; 2010 Jul; 5(7):e11646. PubMed ID: 20657831
    [TBL] [Abstract][Full Text] [Related]  

  • 2. How deep-sea wood falls sustain chemosynthetic life.
    Bienhold C; Pop Ristova P; Wenzhöfer F; Dittmar T; Boetius A
    PLoS One; 2013; 8(1):e53590. PubMed ID: 23301092
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ecology and biogeography of free-living nematodes associated with chemosynthetic environments in the deep sea: a review.
    Vanreusel A; De Groote A; Gollner S; Bright M
    PLoS One; 2010 Aug; 5(8):e12449. PubMed ID: 20805986
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Advances in taxonomy, ecology, and biogeography of Dirivultidae (copepoda) associated with chemosynthetic environments in the deep sea.
    Gollner S; Ivanenko VN; Arbizu PM; Bright M
    PLoS One; 2010 Aug; 5(8):e9801. PubMed ID: 20838422
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transcriptomic analysis reveals insights into deep-sea adaptations of the dominant species, Shinkaia crosnieri (Crustacea: Decapoda: Anomura), inhabiting both hydrothermal vents and cold seeps.
    Cheng J; Hui M; Sha Z
    BMC Genomics; 2019 May; 20(1):388. PubMed ID: 31103028
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Temporal change in deep-sea benthic ecosystems: a review of the evidence from recent time-series studies.
    Glover AG; Gooday AJ; Bailey DM; Billett DS; Chevaldonné P; Colaço A; Copley J; Cuvelier D; Desbruyères D; Kalogeropoulou V; Klages M; Lampadariou N; Lejeusne C; Mestre NC; Paterson GL; Perez T; Ruhl H; Sarrazin J; Soltwedel T; Soto EH; Thatje S; Tselepides A; Van Gaever S; Vanreusel A
    Adv Mar Biol; 2010; 58():1-95. PubMed ID: 20959156
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High connectivity across the fragmented chemosynthetic ecosystems of the deep Atlantic Equatorial Belt: efficient dispersal mechanisms or questionable endemism?
    Teixeira S; Olu K; Decker C; Cunha RL; Fuchs S; Hourdez S; Serrão EA; Arnaud-Haond S
    Mol Ecol; 2013 Sep; 22(18):4663-80. PubMed ID: 23927457
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Temporal and Spatial Variations of Bacterial and Faunal Communities Associated with Deep-Sea Wood Falls.
    Pop Ristova P; Bienhold C; Wenzhöfer F; Rossel PE; Boetius A
    PLoS One; 2017; 12(1):e0169906. PubMed ID: 28122036
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The contrasted evolutionary fates of deep-sea chemosynthetic mussels (Bivalvia, Bathymodiolinae).
    Thubaut J; Puillandre N; Faure B; Cruaud C; Samadi S
    Ecol Evol; 2013 Nov; 3(14):4748-66. PubMed ID: 24363902
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Protobranch bivalves.
    Zardus JD
    Adv Mar Biol; 2002; 42():1-65. PubMed ID: 12094722
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hydroids (Cnidaria, Hydrozoa) from Mauritanian Coral Mounds.
    Gil M; Ramil F; AgÍs JA
    Zootaxa; 2020 Nov; 4878(3):zootaxa.4878.3.2. PubMed ID: 33311142
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Deep-water chemosynthetic ecosystem research during the census of marine life decade and beyond: a proposed deep-ocean road map.
    German CR; Ramirez-Llodra E; Baker MC; Tyler PA;
    PLoS One; 2011; 6(8):e23259. PubMed ID: 21829722
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Food-Web Complexity in Guaymas Basin Hydrothermal Vents and Cold Seeps.
    Portail M; Olu K; Dubois SF; Escobar-Briones E; Gelinas Y; Menot L; Sarrazin J
    PLoS One; 2016; 11(9):e0162263. PubMed ID: 27683216
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Colonization of organic substrates deployed in deep-sea reducing habitats by symbiotic species and associated fauna.
    Gaudron SM; Pradillon F; Pailleret M; Duperron S; Le Bris N; Gaill F
    Mar Environ Res; 2010 Jul; 70(1):1-12. PubMed ID: 20334908
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Morphology of First Zoeal Stage of Four Genera of Alvinocaridid Shrimps from Hydrothermal Vents and Cold Seeps: Implications for Ecology, Larval Biology and Phylogeny.
    Hernández-Ávila I; Cambon-Bonavita MA; Pradillon F
    PLoS One; 2015; 10(12):e0144657. PubMed ID: 26710075
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mitogenomics reveals phylogeny and repeated motifs in control regions of the deep-sea family Siboglinidae (Annelida).
    Li Y; Kocot KM; Schander C; Santos SR; Thornhill DJ; Halanych KM
    Mol Phylogenet Evol; 2015 Apr; 85():221-9. PubMed ID: 25721539
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparative composition, diversity and trophic ecology of sediment macrofauna at vents, seeps and organic falls.
    Bernardino AF; Levin LA; Thurber AR; Smith CR
    PLoS One; 2012; 7(4):e33515. PubMed ID: 22496753
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microbial Eukaryotes Associated With Sediments in Deep-Sea Cold Seeps.
    Zhang Y; Huang N; Wang M; Liu H; Jing H
    Front Microbiol; 2021; 12():782004. PubMed ID: 35003010
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Unanticipated discovery of two rare gastropod molluscs from recently located hydrothermally influenced areas in the Okinawa Trough.
    Chen C; Watanabe HK; Miyazaki J; Kawagucci S
    PeerJ; 2017; 5():e4121. PubMed ID: 29209579
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Colonization of plant substrates at hydrothermal vents and cold seeps in the northeast Atlantic and Mediterranean and occurrence of symbiont-related bacteria.
    Szafranski KM; Deschamps P; Cunha MR; Gaudron SM; Duperron S
    Front Microbiol; 2015; 6():162. PubMed ID: 25774156
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.