These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

74 related articles for article (PubMed ID: 20658267)

  • 1. A robust sliding mode controller with internal model for closed-loop artificial pancreas.
    Abu-Rmileh A; Garcia-Gabin W; Zambrano D
    Med Biol Eng Comput; 2010 Dec; 48(12):1191-201. PubMed ID: 20658267
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Novel insulin delivery profiles for mixed meals for sensor-augmented pump and closed-loop artificial pancreas therapy for type 1 diabetes mellitus.
    Srinivasan A; Lee JB; Dassau E; Doyle FJ
    J Diabetes Sci Technol; 2014 Sep; 8(5):957-68. PubMed ID: 25049364
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Controlling the AP Controller: Controller Performance Assessment and Modification.
    Hajizadeh I; Hobbs N; Samadi S; Sevil M; Rashid M; Brandt R; Askari MR; Maloney Z; Cinar A
    J Diabetes Sci Technol; 2019 Nov; 13(6):1091-1104. PubMed ID: 31561714
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Arbitrary-order sliding mode-based robust control algorithm for the developing artificial pancreas mechanism.
    Alam W; Khan Q; Riaz RA; Akmeliawati R
    IET Syst Biol; 2020 Dec; 14(6):307-313. PubMed ID: 33399094
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Novel algebraic meal disturbance estimation based adaptive robust control design for blood glucose regulation in type 1 diabetes patients.
    Ullah N; Muhammad AS
    IET Syst Biol; 2020 Aug; 14(4):200-210. PubMed ID: 32737278
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optimized type-2 fuzzy controller based on IoMT for stabilizing the glucose level in type-1 diabetic patients.
    Sayed A; Zalam BA; Elhoushy M; Nabil E
    Sci Rep; 2023 Sep; 13(1):14508. PubMed ID: 37667042
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analysis of the performances of various controllers adopted in the biomedical field for blood glucose regulation: a case study of the type-1 diabetes.
    Abubakar IN; Essabbar M; Saikouk H
    J Med Eng Technol; 2023 Nov; 47(8):376-388. PubMed ID: 38757394
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sliding-mode-based controllers for automation of blood glucose concentration for type 1 diabetes.
    Babar SA; Ahmad I; Mughal IS
    IET Syst Biol; 2021 Apr; 15(2):72-82. PubMed ID: 33780148
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Algorithms for a closed-loop artificial pancreas: the case for model predictive control.
    Bequette BW
    J Diabetes Sci Technol; 2013 Nov; 7(6):1632-43. PubMed ID: 24351190
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Observer-based control for plasma glucose regulation in type 1 diabetes mellitus patients with unknown input delay.
    Targui B; Castro-Gomez JF; Hernández-González O; Valencia-Palomo G; Guerrero-Sánchez ME
    Int J Numer Method Biomed Eng; 2024 Jul; 40(7):e3826. PubMed ID: 38705952
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hardware design for blood glucose control based on the Sorensen diabetic patient model using a robust evolving cloud-based controller.
    Chellamuthu Kalaimani S; Jeyakumar V
    Comput Methods Biomech Biomed Engin; 2023 Nov; ():1-22. PubMed ID: 37909209
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sliding mode control for a fractional-order non-linear glucose-insulin system.
    Khan MW; Abid M; Khan AQ; Mustafa G; Ali M; Khan A
    IET Syst Biol; 2020 Oct; 14(5):223-229. PubMed ID: 33095743
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Glucose Rate-of-Change and Insulin-on-Board Jointly Weighted Zone Model Predictive Control.
    Deshpande S; Doyle FJ; Dassau E
    IEEE Trans Control Syst Technol; 2023 Sep; 31(5):2261-2274. PubMed ID: 38525198
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The next generation of artificial pancreas control algorithms.
    Teixeira RE; Malin S
    J Diabetes Sci Technol; 2008 Jan; 2(1):105-12. PubMed ID: 19885184
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Robust stability control for nonlinear time varying delay fractional order practical systems and application in Glucose-Insulin system.
    Alikhani G; Balochian S
    Comput Methods Biomech Biomed Engin; 2023; 26(15):1796-1805. PubMed ID: 36377247
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Velocity-weighting & velocity-penalty MPC of an artificial pancreas: Improved safety & performance.
    Gondhalekar R; Dassau E; Doyle FJ
    Automatica (Oxf); 2018 May; 91():105-117. PubMed ID: 30034017
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modelling the effect of insulin on the disposal of meal-attributable glucose in type 1 diabetes.
    García-García F; Hovorka R; Wilinska ME; Elleri D; Hernando ME
    Med Biol Eng Comput; 2017 Feb; 55(2):271-282. PubMed ID: 27155940
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of short-term predictors of glucose concentration in type 1 diabetes combining feature ranking with regression models.
    Georga EI; Protopappas VC; Polyzos D; Fotiadis DI
    Med Biol Eng Comput; 2015 Dec; 53(12):1305-18. PubMed ID: 25773366
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A mechanical chest compressor closed-loop controller with an effective trade-off between blood flow improvement and ribs fracture reduction.
    Zhang G; Wu T; Song Z; Wang H; Lu H; Wang Y; Wang D; Chen F
    Med Biol Eng Comput; 2015 Jun; 53(6):487-97. PubMed ID: 25735437
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Designing an artificial pancreas architecture: the AP@home experience.
    Lanzola G; Toffanin C; Di Palma F; Del Favero S; Magni L; Bellazzi R
    Med Biol Eng Comput; 2015 Dec; 53(12):1271-83. PubMed ID: 25430423
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.