These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

93 related articles for article (PubMed ID: 20658336)

  • 1. Prediction of neurotoxins by support vector machine based on multiple feature vectors.
    Guang XM; Guo YZ; Wang X; Li ML
    Interdiscip Sci; 2010 Sep; 2(3):241-6. PubMed ID: 20658336
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prediction of neurotoxins based on their function and source.
    Saha S; Raghava GP
    In Silico Biol; 2007; 7(4-5):369-87. PubMed ID: 18391230
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prediction of presynaptic and postsynaptic neurotoxins by the increment of diversity.
    Yang L; Li Q
    Toxicol In Vitro; 2009 Mar; 23(2):346-8. PubMed ID: 19138734
    [TBL] [Abstract][Full Text] [Related]  

  • 4. MATEPRED-A-SVM-Based Prediction Method for Multidrug And Toxin Extrusion (MATE) Proteins.
    Tamanna ; Ramana J
    Comput Biol Chem; 2015 Oct; 58():199-204. PubMed ID: 26256800
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Using Reduced Amino Acid Alphabet and Biological Properties to Analyze and Predict Animal Neurotoxin Protein.
    Yu Y; Wang S; Wang Y; Cao Y; Yu C; Pan Y; Su D; Lu Q; Zuo Y; Yang L
    Curr Drug Metab; 2020; 21(10):810-817. PubMed ID: 32433000
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Subcellular localization prediction of apoptosis proteins based on evolutionary information and support vector machine.
    Xiang Q; Liao B; Li X; Xu H; Chen J; Shi Z; Dai Q; Yao Y
    Artif Intell Med; 2017 May; 78():41-46. PubMed ID: 28764871
    [TBL] [Abstract][Full Text] [Related]  

  • 7. SVM based prediction of RNA-binding proteins using binding residues and evolutionary information.
    Kumar M; Gromiha MM; Raghava GP
    J Mol Recognit; 2011; 24(2):303-13. PubMed ID: 20677174
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prediction of nicotinamide adenine dinucleotide interacting sites based on ensemble support vector machine.
    Wang X; Wang CC; Zhang YQ; Mi G; Zhang J; Li ML
    Protein Pept Lett; 2012 May; 19(5):559-66. PubMed ID: 22316310
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Predict Gram-Positive and Gram-Negative Subcellular Localization via Incorporating Evolutionary Information and Physicochemical Features Into Chou's General PseAAC.
    Sharma R; Dehzangi A; Lyons J; Paliwal K; Tsunoda T; Sharma A
    IEEE Trans Nanobioscience; 2015 Dec; 14(8):915-26. PubMed ID: 26584499
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Prediction of the bonding states of cysteines using the support vector machines based on multiple feature vectors and cysteine state sequences.
    Chen YC; Lin YS; Lin CJ; Hwang JK
    Proteins; 2004 Jun; 55(4):1036-42. PubMed ID: 15146500
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of three classes of snake neurotoxins by homology modeling and computer simulation graphics.
    Juan HF; Hung CC; Wang KT; Chiou SH
    Biochem Biophys Res Commun; 1999 Apr; 257(2):500-10. PubMed ID: 10198241
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Support vector machine (SVM) based multiclass prediction with basic statistical analysis of plasminogen activators.
    Muthukrishnan S; Puri M; Lefevre C
    BMC Res Notes; 2014 Jan; 7():63. PubMed ID: 24468032
    [TBL] [Abstract][Full Text] [Related]  

  • 13. MemHyb: predicting membrane protein types by hybridizing SAAC and PSSM.
    Hayat M; Khan A
    J Theor Biol; 2012 Jan; 292():93-102. PubMed ID: 22001079
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Protein submitochondrial localization from integrated sequence representation and SVM-based backward feature extraction.
    Li L; Yu S; Xiao W; Li Y; Hu W; Huang L; Zheng X; Zhou S; Yang H
    Mol Biosyst; 2015 Jan; 11(1):170-7. PubMed ID: 25335193
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Predicting Presynaptic and Postsynaptic Neurotoxins by Developing Feature Selection Technique.
    Tang H; Yang Y; Zhang C; Chen R; Huang P; Duan C; Zou P
    Biomed Res Int; 2017; 2017():3267325. PubMed ID: 28303250
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prediction of GABAA receptor proteins using the concept of Chou's pseudo-amino acid composition and support vector machine.
    Mohabatkar H; Mohammad Beigi M; Esmaeili A
    J Theor Biol; 2011 Jul; 281(1):18-23. PubMed ID: 21536049
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Prediction of non-classical secreted proteins using informative physicochemical properties.
    Hung CH; Huang HL; Hsu KT; Ho SJ; Ho SY
    Interdiscip Sci; 2010 Sep; 2(3):263-70. PubMed ID: 20658339
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Prediction of Drug-Target Interaction Networks from the Integration of Protein Sequences and Drug Chemical Structures.
    Meng FR; You ZH; Chen X; Zhou Y; An JY
    Molecules; 2017 Jul; 22(7):. PubMed ID: 28678206
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analysis and prediction of presynaptic and postsynaptic neurotoxins by Chou's general pseudo amino acid composition and motif features.
    Mei J; Zhao J
    J Theor Biol; 2018 Jun; 447():147-153. PubMed ID: 29596863
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Utilize a few features to classify presynaptic and postsynaptic neurotoxins.
    Wan H; Liu Q; Ju Y
    Comput Biol Med; 2023 Jan; 152():106380. PubMed ID: 36473343
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.