These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

85 related articles for article (PubMed ID: 20658339)

  • 1. Prediction of non-classical secreted proteins using informative physicochemical properties.
    Hung CH; Huang HL; Hsu KT; Ho SJ; Ho SY
    Interdiscip Sci; 2010 Sep; 2(3):263-70. PubMed ID: 20658339
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A machine learning based method for the prediction of secretory proteins using amino acid composition, their order and similarity-search.
    Garg A; Raghava GP
    In Silico Biol; 2008; 8(2):129-40. PubMed ID: 18928201
    [TBL] [Abstract][Full Text] [Related]  

  • 3. SecretP: a new method for predicting mammalian secreted proteins.
    Yu L; Guo Y; Zhang Z; Li Y; Li M; Li G; Xiong W; Zeng Y
    Peptides; 2010 Apr; 31(4):574-8. PubMed ID: 20045033
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sequence based human leukocyte antigen gene prediction using informative physicochemical properties.
    Shoombuatong W; Mekha P; Chaijaruwanich J
    Int J Data Min Bioinform; 2015; 13(3):211-24. PubMed ID: 26547977
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ranking Gene Ontology terms for predicting non-classical secretory proteins in eukaryotes and prokaryotes.
    Huang WL
    J Theor Biol; 2012 Nov; 312():105-13. PubMed ID: 22967952
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A new hybrid coding for protein secondary structure prediction based on primary structure similarity.
    Li Z; Wang J; Zhang S; Zhang Q; Wu W
    Gene; 2017 Jun; 618():8-13. PubMed ID: 28322997
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Signal peptide discrimination and cleavage site identification using SVM and NN.
    Kazemian HB; Yusuf SA; White K
    Comput Biol Med; 2014 Feb; 45():98-110. PubMed ID: 24480169
    [TBL] [Abstract][Full Text] [Related]  

  • 8. SPRED: A machine learning approach for the identification of classical and non-classical secretory proteins in mammalian genomes.
    Kandaswamy KK; Pugalenthi G; Hartmann E; Kalies KU; Möller S; Suganthan PN; Martinetz T
    Biochem Biophys Res Commun; 2010 Jan; 391(3):1306-11. PubMed ID: 19995554
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Computational identification of ubiquitylation sites from protein sequences.
    Tung CW; Ho SY
    BMC Bioinformatics; 2008 Jul; 9():310. PubMed ID: 18625080
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The accurate prediction of protein family from amino acid sequence by measuring features of sequence fragments.
    Hong H; Hong Q; Perkins R; Shi L; Fang H; Su Z; Dragan Y; Fuscoe JC; Tong W
    J Comput Biol; 2009 Dec; 16(12):1671-88. PubMed ID: 20047490
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Prediction of the functional class of metal-binding proteins from sequence derived physicochemical properties by support vector machine approach.
    Lin HH; Han LY; Zhang HL; Zheng CJ; Xie B; Cao ZW; Chen YZ
    BMC Bioinformatics; 2006 Dec; 7 Suppl 5(Suppl 5):S13. PubMed ID: 17254297
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Predicting and analyzing DNA-binding domains using a systematic approach to identifying a set of informative physicochemical and biochemical properties.
    Huang HL; Lin IC; Liou YF; Tsai CT; Hsu KT; Huang WL; Ho SJ; Ho SY
    BMC Bioinformatics; 2011 Feb; 12 Suppl 1(Suppl 1):S47. PubMed ID: 21342579
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Remote homology detection incorporating the context of physicochemical properties.
    Bedoya O; Tischer I
    Comput Biol Med; 2014 Feb; 45():43-50. PubMed ID: 24480162
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Properties and identification of human protein drug targets.
    Bakheet TM; Doig AJ
    Bioinformatics; 2009 Feb; 25(4):451-7. PubMed ID: 19164304
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prediction of ubiquitin proteins using artificial neural networks, hidden markov model and support vector machines.
    Jaiswal K
    In Silico Biol; 2007; 7(6):559-68. PubMed ID: 18467768
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Protein location prediction using atomic composition and global features of the amino acid sequence.
    Cherian BS; Nair AS
    Biochem Biophys Res Commun; 2010 Jan; 391(4):1670-4. PubMed ID: 20036215
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Support Vector Machine-based classification of protein folds using the structural properties of amino acid residues and amino acid residue pairs.
    Shamim MT; Anwaruddin M; Nagarajaram HA
    Bioinformatics; 2007 Dec; 23(24):3320-7. PubMed ID: 17989092
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Using amino acid physicochemical distance transformation for fast protein remote homology detection.
    Liu B; Wang X; Chen Q; Dong Q; Lan X
    PLoS One; 2012; 7(9):e46633. PubMed ID: 23029559
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Prediction of neurotoxins by support vector machine based on multiple feature vectors.
    Guang XM; Guo YZ; Wang X; Li ML
    Interdiscip Sci; 2010 Sep; 2(3):241-6. PubMed ID: 20658336
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Predict potential drug targets from the ion channel proteins based on SVM.
    Huang C; Zhang R; Chen Z; Jiang Y; Shang Z; Sun P; Zhang X; Li X
    J Theor Biol; 2010 Feb; 262(4):750-6. PubMed ID: 19903486
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.