BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 20659287)

  • 1. Determinants of bacteriophage P22 polyhead formation: the role of coat protein flexibility in conformational switching.
    Suhanovsky MM; Parent KN; Dunn SE; Baker TS; Teschke CM
    Mol Microbiol; 2010 Sep; 77(6):1568-82. PubMed ID: 20659287
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Highly specific salt bridges govern bacteriophage P22 icosahedral capsid assembly: identification of the site in coat protein responsible for interaction with scaffolding protein.
    Cortines JR; Motwani T; Vyas AA; Teschke CM
    J Virol; 2014 May; 88(10):5287-97. PubMed ID: 24600011
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bacteriophage P22 capsid size determination: roles for the coat protein telokin-like domain and the scaffolding protein amino-terminus.
    Suhanovsky MM; Teschke CM
    Virology; 2011 Sep; 417(2):418-29. PubMed ID: 21784500
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cryo-reconstructions of P22 polyheads suggest that phage assembly is nucleated by trimeric interactions among coat proteins.
    Parent KN; Sinkovits RS; Suhanovsky MM; Teschke CM; Egelman EH; Baker TS
    Phys Biol; 2010 Dec; 7(4):045004. PubMed ID: 21149969
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Polyhead formation in phage P22 pinpoints a region in coat protein required for conformational switching.
    Parent KN; Suhanovsky MM; Teschke CM
    Mol Microbiol; 2007 Sep; 65(5):1300-10. PubMed ID: 17680786
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Decoding bacteriophage P22 assembly: identification of two charged residues in scaffolding protein responsible for coat protein interaction.
    Cortines JR; Weigele PR; Gilcrease EB; Casjens SR; Teschke CM
    Virology; 2011 Dec; 421(1):1-11. PubMed ID: 21974803
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Molecular Staple: D-Loops in the I Domain of Bacteriophage P22 Coat Protein Make Important Intercapsomer Contacts Required for Procapsid Assembly.
    D'Lima NG; Teschke CM
    J Virol; 2015 Oct; 89(20):10569-79. PubMed ID: 26269173
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The energetic contributions of scaffolding and coat proteins to the assembly of bacteriophage procapsids.
    Zlotnick A; Suhanovsky MM; Teschke CM
    Virology; 2012 Jun; 428(1):64-9. PubMed ID: 22520942
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantitative analysis of multi-component spherical virus assembly: scaffolding protein contributes to the global stability of phage P22 procapsids.
    Parent KN; Zlotnick A; Teschke CM
    J Mol Biol; 2006 Jun; 359(4):1097-106. PubMed ID: 16697406
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular genetics of bacteriophage P22 scaffolding protein's functional domains.
    Weigele PR; Sampson L; Winn-Stapley D; Casjens SR
    J Mol Biol; 2005 May; 348(4):831-44. PubMed ID: 15843016
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phage P22 procapsids equilibrate with free coat protein subunits.
    Parent KN; Suhanovsky MM; Teschke CM
    J Mol Biol; 2007 Jan; 365(2):513-22. PubMed ID: 17067636
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The role of the coat protein A-domain in p22 bacteriophage maturation.
    Morris DS; Prevelige PE
    Viruses; 2014 Jul; 6(7):2708-22. PubMed ID: 25025835
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Detection of intermediates and kinetic control during assembly of bacteriophage P22 procapsid.
    Tuma R; Tsuruta H; French KH; Prevelige PE
    J Mol Biol; 2008 Sep; 381(5):1395-406. PubMed ID: 18582476
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanism of scaffolding-directed virus assembly suggested by comparison of scaffolding-containing and scaffolding-lacking P22 procapsids.
    Thuman-Commike PA; Greene B; Malinski JA; Burbea M; McGough A; Chiu W; Prevelige PE
    Biophys J; 1999 Jun; 76(6):3267-77. PubMed ID: 10354452
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Domain study of bacteriophage p22 coat protein and characterization of the capsid lattice transformation by hydrogen/deuterium exchange.
    Kang S; Prevelige PE
    J Mol Biol; 2005 Apr; 347(5):935-48. PubMed ID: 15784254
    [TBL] [Abstract][Full Text] [Related]  

  • 16. GroEL/S substrate specificity based on substrate unfolding propensity.
    Parent KN; Teschke CM
    Cell Stress Chaperones; 2007; 12(1):20-32. PubMed ID: 17441504
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural roles of subunit cysteines in the folding and assembly of the DNA packaging machine (portal) of bacteriophage P22.
    Rodríguez-Casado A; Thomas GJ
    Biochemistry; 2003 Apr; 42(12):3437-45. PubMed ID: 12653547
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Unraveling the role of the C-terminal helix turn helix of the coat-binding domain of bacteriophage P22 scaffolding protein.
    Padilla-Meier GP; Gilcrease EB; Weigele PR; Cortines JR; Siegel M; Leavitt JC; Teschke CM; Casjens SR
    J Biol Chem; 2012 Sep; 287(40):33766-80. PubMed ID: 22879595
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Three-dimensional structure of scaffolding-containing phage p22 procapsids by electron cryo-microscopy.
    Thuman-Commike PA; Greene B; Jakana J; Prasad BV; King J; Prevelige PE; Chiu W
    J Mol Biol; 1996 Jul; 260(1):85-98. PubMed ID: 8676394
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Assembly and Capsid Expansion Mechanism of Bacteriophage P22 Revealed by High-Resolution Cryo-EM Structures.
    Xiao H; Zhou J; Yang F; Liu Z; Song J; Chen W; Liu H; Cheng L
    Viruses; 2023 Jan; 15(2):. PubMed ID: 36851569
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.