These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 20659430)

  • 1. Contributions of efference copy to limb localization: evidence from deafferentation.
    Medina J; Jax SA; Brown MJ; Coslett HB
    Brain Res; 2010 Oct; 1355():104-11. PubMed ID: 20659430
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Two-component models of reaching: evidence from deafferentation in a Fitts' law task.
    Medina J; Jax SA; Coslett HB
    Neurosci Lett; 2009 Feb; 451(3):222-6. PubMed ID: 19150390
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Accurate reaching after active but not passive movements of the hand: evidence for forward modeling.
    Branch Coslett H; Buxbaum LJ; Schwoebel J
    Behav Neurol; 2008; 19(3):117-25. PubMed ID: 18641431
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Force-field adaptation without proprioception: can vision be used to model limb dynamics?
    Sarlegna FR; Malfait N; Bringoux L; Bourdin C; Vercher JL
    Neuropsychologia; 2010 Jan; 48(1):60-7. PubMed ID: 19695273
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Control of aperture closure initiation during reach-to-grasp movements under manipulations of visual feedback and trunk involvement in Parkinson's disease.
    Rand MK; Lemay M; Squire LM; Shimansky YP; Stelmach GE
    Exp Brain Res; 2010 Mar; 201(3):509-25. PubMed ID: 19902195
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Visual Feedback Processing of the Limb Involves Two Distinct Phases.
    Cross KP; Cluff T; Takei T; Scott SH
    J Neurosci; 2019 Aug; 39(34):6751-6765. PubMed ID: 31308095
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Visual control of reaching movements without vision of the limb. II. Evidence of fast unconscious processes correcting the trajectory of the hand to the final position of a double-step stimulus.
    Pélisson D; Prablanc C; Goodale MA; Jeannerod M
    Exp Brain Res; 1986; 62(2):303-11. PubMed ID: 3709715
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Paradoxical adaptation of successful movements: The crucial role of internal error signals.
    Gaveau V; Priot AE; Pisella L; Havé L; Prablanc C; Rossetti Y
    Conscious Cogn; 2018 Sep; 64():135-145. PubMed ID: 30025675
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optimal sensorimotor control in eye movement sequences.
    Munuera J; Morel P; Duhamel JR; Deneve S
    J Neurosci; 2009 Mar; 29(10):3026-35. PubMed ID: 19279239
    [TBL] [Abstract][Full Text] [Related]  

  • 10. No proprioceptive deficits in autism despite movement-related sensory and execution impairments.
    Fuentes CT; Mostofsky SH; Bastian AJ
    J Autism Dev Disord; 2011 Oct; 41(10):1352-61. PubMed ID: 21165765
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Deafferentation and pointing with visual double-step perturbations.
    Bard C; Turrell Y; Fleury M; Teasdale N; Lamarre Y; Martin O
    Exp Brain Res; 1999 Apr; 125(4):410-6. PubMed ID: 10323286
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Somatosensory target information is used for reaching but not for saccadic eye movements.
    Goettker A; Fiehler K; Voudouris D
    J Neurophysiol; 2020 Oct; 124(4):1092-1102. PubMed ID: 32845193
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bimanual circling in deafferented patients: evidence for a role of visual forward models.
    Mechsner F; Stenneken P; Cole J; Aschersleben G; Prinz W
    J Neuropsychol; 2007 Sep; 1(2):259-82. PubMed ID: 19331020
    [TBL] [Abstract][Full Text] [Related]  

  • 14. PET study of visually and non-visually guided finger movements in patients with severe pan-sensory neuropathies and healthy controls.
    Weeks RA; Gerloff C; Dalakas M; Hallett M
    Exp Brain Res; 1999 Oct; 128(3):291-302. PubMed ID: 10501801
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The role of proprioception in action recognition.
    Farrer C; Franck N; Paillard J; Jeannerod M
    Conscious Cogn; 2003 Dec; 12(4):609-19. PubMed ID: 14656504
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Supplemental vibrotactile feedback control of stabilization and reaching actions of the arm using limb state and position error encodings.
    Krueger AR; Giannoni P; Shah V; Casadio M; Scheidt RA
    J Neuroeng Rehabil; 2017 May; 14(1):36. PubMed ID: 28464891
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Control of wrist movement in deafferented man: evidence for a mixed strategy of position and amplitude control.
    Miall RC; Haggard P; Cole JD
    Exp Brain Res; 2017 Nov; 235(11):3403-3416. PubMed ID: 28821927
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of visuomotor-map uncertainty on visuomotor adaptation.
    Saijo N; Gomi H
    J Neurophysiol; 2012 Mar; 107(6):1576-85. PubMed ID: 22190631
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lack of conscious recognition of one's own actions in a haptically deafferented patient.
    Fourneret P; Paillard J; Lamarre Y; Cole J; Jeannerod M
    Neuroreport; 2002 Mar; 13(4):541-7. PubMed ID: 11930177
    [TBL] [Abstract][Full Text] [Related]  

  • 20. How active gaze informs the hand in sequential pointing movements.
    Wilmut K; Wann JP; Brown JH
    Exp Brain Res; 2006 Nov; 175(4):654-66. PubMed ID: 16794847
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.