These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
246 related articles for article (PubMed ID: 20659557)
1. Similarities in the behavior and molecular deficits in the frontal cortex between the neurotensin receptor subtype 1 knockout mice and chronic phencyclidine-treated mice: relevance to schizophrenia. Li Z; Boules M; Williams K; Gordillo A; Li S; Richelson E Neurobiol Dis; 2010 Nov; 40(2):467-77. PubMed ID: 20659557 [TBL] [Abstract][Full Text] [Related]
2. The novel neurotensin analog NT69L blocks phencyclidine (PCP)-induced increases in locomotor activity and PCP-induced increases in monoamine and amino acids levels in the medial prefrontal cortex. Li Z; Boules M; Williams K; Peris J; Richelson E Brain Res; 2010 Jan; 1311():28-36. PubMed ID: 19948149 [TBL] [Abstract][Full Text] [Related]
3. Effect of amphetamine on extracellular concentrations of amino acids in striatum in neurotensin subtype 1 and 2 receptor null mice: a possible interaction between neurotensin receptors and amino acid systems for study of schizophrenia. Li Z; Liang Y; Boules M; Gordillo A; Richelson E Neuropharmacology; 2010 Jun; 58(7):1174-8. PubMed ID: 20193696 [TBL] [Abstract][Full Text] [Related]
4. Effects of D-amphetamine and phencyclidine on behavior and extracellular concentrations of neurotensin and dopamine in the ventral striatum and the medial prefrontal cortex of the rat. Hertel P; Mathé JM; Nomikos GG; Iurlo M; Mathé AA; Svensson TH Behav Brain Res; 1995 Dec; 72(1-2):103-14. PubMed ID: 8788863 [TBL] [Abstract][Full Text] [Related]
5. Repeated phencyclidine treatment induces negative symptom-like behavior in forced swimming test in mice: imbalance of prefrontal serotonergic and dopaminergic functions. Noda Y; Kamei H; Mamiya T; Furukawa H; Nabeshima T Neuropsychopharmacology; 2000 Oct; 23(4):375-87. PubMed ID: 10989264 [TBL] [Abstract][Full Text] [Related]
6. PCP-based mice models of schizophrenia: differential behavioral, neurochemical and cellular effects of acute and subchronic treatments. Castañé A; Santana N; Artigas F Psychopharmacology (Berl); 2015 Nov; 232(21-22):4085-97. PubMed ID: 25943167 [TBL] [Abstract][Full Text] [Related]
7. Animal model of schizophrenia: dysfunction of NMDA receptor-signaling in mice following withdrawal from repeated administration of phencyclidine. Nabeshima T; Mouri A; Murai R; Noda Y Ann N Y Acad Sci; 2006 Nov; 1086():160-8. PubMed ID: 17185514 [TBL] [Abstract][Full Text] [Related]
8. Hyperactivity of the dopaminergic system in NTS1 and NTS2 null mice. Liang Y; Boules M; Li Z; Williams K; Miura T; Oliveros A; Richelson E Neuropharmacology; 2010 Jun; 58(8):1199-205. PubMed ID: 20211191 [TBL] [Abstract][Full Text] [Related]
10. Effects of cariprazine on extracellular levels of glutamate, GABA, dopamine, noradrenaline and serotonin in the medial prefrontal cortex in the rat phencyclidine model of schizophrenia studied by microdialysis and simultaneous recordings of locomotor activity. Kehr J; Yoshitake T; Ichinose F; Yoshitake S; Kiss B; Gyertyán I; Adham N Psychopharmacology (Berl); 2018 May; 235(5):1593-1607. PubMed ID: 29637288 [TBL] [Abstract][Full Text] [Related]
11. Role of the simultaneous enhancement of NMDA and dopamine D1 receptor-mediated neurotransmission in the effects of clozapine on phencyclidine-induced acute increases in glutamate levels in the rat medial prefrontal cortex. Abekawa T; Ito K; Koyama T Naunyn Schmiedebergs Arch Pharmacol; 2006 Dec; 374(3):177-93. PubMed ID: 17103144 [TBL] [Abstract][Full Text] [Related]
12. Hypofunctional glutamatergic neurotransmission in the prefrontal cortex is involved in the emotional deficit induced by repeated treatment with phencyclidine in mice: implications for abnormalities of glutamate release and NMDA-CaMKII signaling. Murai R; Noda Y; Matsui K; Kamei H; Mouri A; Matsuba K; Nitta A; Furukawa H; Nabeshima T Behav Brain Res; 2007 Jun; 180(2):152-60. PubMed ID: 17451820 [TBL] [Abstract][Full Text] [Related]
13. Phencyclidine and genetic animal models of schizophrenia developed in relation to the glutamate hypothesis. Enomoto T; Noda Y; Nabeshima T Methods Find Exp Clin Pharmacol; 2007 May; 29(4):291-301. PubMed ID: 17609743 [TBL] [Abstract][Full Text] [Related]
15. Down-Regulation of Hippocampal Genes Regulating Dopaminergic, GABAergic, and Glutamatergic Function Following Combined Neonatal Phencyclidine and Post-Weaning Social Isolation of Rats as a Neurodevelopmental Model for Schizophrenia. Gaskin PL; Toledo-Rodriguez M; Alexander SP; Fone KC Int J Neuropsychopharmacol; 2016 Nov; 19(11):. PubMed ID: 27382048 [TBL] [Abstract][Full Text] [Related]
16. The role of the hippocampo-prefrontal cortex system in phencyclidine-induced psychosis: a model for schizophrenia. Jodo E J Physiol Paris; 2013 Dec; 107(6):434-40. PubMed ID: 23792022 [TBL] [Abstract][Full Text] [Related]
17. Effects of N-acetylaspartylglutamate (NAAG) peptidase inhibition on release of glutamate and dopamine in prefrontal cortex and nucleus accumbens in phencyclidine model of schizophrenia. Zuo D; Bzdega T; Olszewski RT; Moffett JR; Neale JH J Biol Chem; 2012 Jun; 287(26):21773-82. PubMed ID: 22570482 [TBL] [Abstract][Full Text] [Related]
18. Cannabinoid CB1 receptor antagonism prevents neurochemical and behavioural deficits induced by chronic phencyclidine. Guidali C; Viganò D; Petrosino S; Zamberletti E; Realini N; Binelli G; Rubino T; Di Marzo V; Parolaro D Int J Neuropsychopharmacol; 2011 Feb; 14(1):17-28. PubMed ID: 20196921 [TBL] [Abstract][Full Text] [Related]
19. Sensorimotor gating in NTS1 and NTS2 null mice: effects of d-amphetamine, dizocilpine, clozapine and NT69L. Oliveros A; Heckman MG; Del Pilar Corena-McLeod M; Williams K; Boules M; Richelson E J Exp Biol; 2010 Dec; 213(Pt 24):4232-9. PubMed ID: 21113004 [TBL] [Abstract][Full Text] [Related]
20. Induction of metabolic hypofunction and neurochemical deficits after chronic intermittent exposure to phencyclidine: differential modulation by antipsychotic drugs. Cochran SM; Kennedy M; McKerchar CE; Steward LJ; Pratt JA; Morris BJ Neuropsychopharmacology; 2003 Feb; 28(2):265-75. PubMed ID: 12589379 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]