These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

291 related articles for article (PubMed ID: 20659596)

  • 1. Liquid-liquid two-phase systems for the production of porous hydrogels and hydrogel microspheres for biomedical applications: A tutorial review.
    Elbert DL
    Acta Biomater; 2011 Jan; 7(1):31-56. PubMed ID: 20659596
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Macroporous interconnected dextran scaffolds of controlled porosity for tissue-engineering applications.
    Lévesque SG; Lim RM; Shoichet MS
    Biomaterials; 2005 Dec; 26(35):7436-46. PubMed ID: 16023718
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Novel glycidyl methacrylated dextran (Dex-GMA)/gelatin hydrogel scaffolds containing microspheres loaded with bone morphogenetic proteins: formulation and characteristics.
    Chen FM; Zhao YM; Sun HH; Jin T; Wang QT; Zhou W; Wu ZF; Jin Y
    J Control Release; 2007 Mar; 118(1):65-77. PubMed ID: 17250921
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Visible light induced electropolymerization of suspended hydrogel bioscaffolds in a microfluidic chip.
    Li P; Yu H; Liu N; Wang F; Lee GB; Wang Y; Liu L; Li WJ
    Biomater Sci; 2018 May; 6(6):1371-1378. PubMed ID: 29790875
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Robust, Self-Healable, and Shape Memory Supramolecular Hydrogel by Multiple Hydrogen Bonding Interactions.
    Feng Z; Zuo H; Gao W; Ning N; Tian M; Zhang L
    Macromol Rapid Commun; 2018 Oct; 39(20):e1800138. PubMed ID: 29722916
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modular scaffolds assembled around living cells using poly(ethylene glycol) microspheres with macroporation via a non-cytotoxic porogen.
    Scott EA; Nichols MD; Kuntz-Willits R; Elbert DL
    Acta Biomater; 2010 Jan; 6(1):29-38. PubMed ID: 19607945
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Porosity-Tuned Chitosan-Polyacrylamide Hydrogel Microspheres for Improved Protein Conjugation.
    Jung S; Abel JH; Starger JL; Yi H
    Biomacromolecules; 2016 Jul; 17(7):2427-36. PubMed ID: 27351270
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Poly(Ethylene Glycol) Dimethacrylates with Cleavable Ketal Sites: Precursors for Cleavable PEG-Hydrogels.
    Pohlit H; Leibig D; Frey H
    Macromol Biosci; 2017 Oct; 17(10):. PubMed ID: 28337839
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cell Microencapsulation in Polyethylene Glycol Hydrogel Microspheres Using Electrohydrodynamic Spraying.
    Imaninezhad M; Jain E; Zustiak SP
    Methods Mol Biol; 2019; 1576():313-325. PubMed ID: 28770494
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fabrication of three-dimensional porous cell-laden hydrogel for tissue engineering.
    Hwang CM; Sant S; Masaeli M; Kachouie NN; Zamanian B; Lee SH; Khademhosseini A
    Biofabrication; 2010 Sep; 2(3):035003. PubMed ID: 20823504
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthesis, characterization and in vitro biocompatibility assessment of a novel tripeptide hydrogelator, as a promising scaffold for tissue engineering applications.
    Pospišil T; Ferhatović Hamzić L; Brkić Ahmed L; Lovrić M; Gajović S; Frkanec L
    Biomater Sci; 2016 Oct; 4(10):1412-6. PubMed ID: 27508285
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A general route for the synthesis of functional, protein-based hydrogel microspheres using tailored protein charge.
    King WJ; Toepke MW; Murphy WL
    Chem Commun (Camb); 2011 Jan; 47(1):526-8. PubMed ID: 21052577
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biocompatibility of hydrogel-based scaffolds for tissue engineering applications.
    Naahidi S; Jafari M; Logan M; Wang Y; Yuan Y; Bae H; Dixon B; Chen P
    Biotechnol Adv; 2017 Sep; 35(5):530-544. PubMed ID: 28558979
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cell-friendly inverse opal-like hydrogels for a spatially separated co-culture system.
    Kim J; Bencherif SA; Li WA; Mooney DJ
    Macromol Rapid Commun; 2014 Sep; 35(18):1578-86. PubMed ID: 25113941
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Oxygen-Purged Microfluidic Device to Enhance Cell Viability in Photopolymerized PEG Hydrogel Microparticles.
    Xia B; Krutkramelis K; Oakey J
    Biomacromolecules; 2016 Jul; 17(7):2459-65. PubMed ID: 27285343
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modulating Supramolecular Peptide Hydrogel Viscoelasticity Using Biomolecular Recognition.
    DiMaio JTM; Doran TM; Ryan DM; Raymond DM; Nilsson BL
    Biomacromolecules; 2017 Nov; 18(11):3591-3599. PubMed ID: 28872306
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Templated Macroporous Polyethylene Glycol Hydrogels for Spheroid and Aggregate Cell Culture.
    Imaninezhad M; Hill L; Kolar G; Vogt K; Zustiak SP
    Bioconjug Chem; 2019 Jan; 30(1):34-46. PubMed ID: 30562006
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Facile fabrication of superporous and biocompatible hydrogel scaffolds for artificial corneal periphery.
    Lee YP; Liu HY; Lin PC; Lee YH; Yu LR; Hsieh CC; Shih PJ; Shih WP; Wang IJ; Yen JY; Dai CA
    Colloids Surf B Biointerfaces; 2019 Mar; 175():26-35. PubMed ID: 30513471
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Design and characterization of an in vivo injectable hydrogel with effervescently generated porosity for regenerative medicine applications.
    Griveau L; Lafont M; le Goff H; Drouglazet C; Robbiani B; Berthier A; Sigaudo-Roussel D; Latif N; Visage CL; Gache V; Debret R; Weiss P; Sohier J
    Acta Biomater; 2022 Mar; 140():324-337. PubMed ID: 34843951
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Alginate microsphere-collagen composite hydrogel for ocular drug delivery and implantation.
    Liu W; Griffith M; Li F
    J Mater Sci Mater Med; 2008 Nov; 19(11):3365-71. PubMed ID: 18545941
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.