These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
184 related articles for article (PubMed ID: 20659764)
1. Triggering the redox reaction of cytochrome c on a biomimetic layer and elimination of interferences for NADH detection. Lee KS; Won MS; Noh HB; Shim YB Biomaterials; 2010 Oct; 31(30):7827-35. PubMed ID: 20659764 [TBL] [Abstract][Full Text] [Related]
2. Lipid-bonded conducting polymer layers for a model biomembrane: application to superoxide biosensors. Kwon NH; Rahman MA; Won MS; Shim YB Anal Chem; 2006 Jan; 78(1):52-60. PubMed ID: 16383310 [TBL] [Abstract][Full Text] [Related]
3. Langmuir-Blodgett films incorporating redox mediators for molecular recognition of NADH. Mecheri B; Piras L; Caminati G Bioelectrochemistry; 2004 Jun; 63(1-2):13-8. PubMed ID: 15110241 [TBL] [Abstract][Full Text] [Related]
4. Electrochemical performance of gold nanoparticle-cytochrome c hybrid interface for H2O2 detection. Yagati AK; Lee T; Min J; Choi JW Colloids Surf B Biointerfaces; 2012 Apr; 92():161-7. PubMed ID: 22197224 [TBL] [Abstract][Full Text] [Related]
5. Characterization of protein-attached conducting polymer monolayer. Kim HJ; Lee KS; Won MS; Shim YB Langmuir; 2008 Feb; 24(3):1087-93. PubMed ID: 18166065 [TBL] [Abstract][Full Text] [Related]
6. A cytochrome c modified-conducting polymer microelectrode for monitoring in vivo changes in nitric oxide. Alvin Koh WC; Rahman MA; Choe ES; Lee DK; Shim YB Biosens Bioelectron; 2008 Apr; 23(9):1374-81. PubMed ID: 18242975 [TBL] [Abstract][Full Text] [Related]
7. Ordered carbohydrate-derived porous carbons immobilized gold nanoparticles as a new electrode material for electrocatalytical oxidation and determination of nicotinamide adenine dinucleotide. Hosseini H; Behbahani M; Mahyari M; Kazerooni H; Bagheri A; Shaabani A Biosens Bioelectron; 2014 Sep; 59():412-7. PubMed ID: 24799340 [TBL] [Abstract][Full Text] [Related]
8. Chemical reversibility and stable low-potential NADH detection with nonconventional conducting polymer nanotubule modified glassy carbon electrodes. Valentini F; Salis A; Curulli A; Palleschi G Anal Chem; 2004 Jun; 76(11):3244-8. PubMed ID: 15167808 [TBL] [Abstract][Full Text] [Related]
9. Carbon nanofiber vs. carbon microparticles as modifiers of glassy carbon and gold electrodes applied in electrochemical sensing of NADH. Pérez B; Del Valle M; Alegret S; Merkoçi A Talanta; 2007 Dec; 74(3):398-404. PubMed ID: 18371655 [TBL] [Abstract][Full Text] [Related]
10. 6-Vinyl coenzyme Q0: Electropolymerization and electrocatalysis of NADH oxidation exploiting poly-p-quinone-modified electrode surfaces. Li Y; Shi L; Ma W; Li DW; Kraatz HB; Long YT Bioelectrochemistry; 2011 Feb; 80(2):128-31. PubMed ID: 20678972 [TBL] [Abstract][Full Text] [Related]
11. Surface-enhanced resonance Raman spectroscopy and spectroscopy study of redox-induced conformational equilibrium of cytochrome c adsorbed on DNA-modified metal electrode. Jiang X; Wang Y; Qu X; Dong S Biosens Bioelectron; 2006 Jul; 22(1):49-55. PubMed ID: 16414257 [TBL] [Abstract][Full Text] [Related]
12. Electrocatalytic oxidation of NADH at gold nanoparticles loaded poly(3,4-ethylenedioxythiophene)-poly(styrene sulfonic acid) film modified electrode and integration of alcohol dehydrogenase for alcohol sensing. Manesh KM; Santhosh P; Gopalan A; Lee KP Talanta; 2008 Jun; 75(5):1307-14. PubMed ID: 18585217 [TBL] [Abstract][Full Text] [Related]
13. A nitrite biosensor based on the immobilization of cytochrome c on multi-walled carbon nanotubes-PAMAM-chitosan nanocomposite modified glass carbon electrode. Chen Q; Ai S; Zhu X; Yin H; Ma Q; Qiu Y Biosens Bioelectron; 2009 Jun; 24(10):2991-6. PubMed ID: 19345570 [TBL] [Abstract][Full Text] [Related]
14. Electrochemical sensing and biosensing platform based on chemically reduced graphene oxide. Zhou M; Zhai Y; Dong S Anal Chem; 2009 Jul; 81(14):5603-13. PubMed ID: 19522529 [TBL] [Abstract][Full Text] [Related]
15. Immobilization and electrochemical redox behavior of cytochrome c on fullerene film-modified electrodes. D'Souza F; Rogers LM; O'Dell ES; Kochman A; Kutner W Bioelectrochemistry; 2005 Apr; 66(1-2):35-40. PubMed ID: 15833700 [TBL] [Abstract][Full Text] [Related]
16. An electrochemical immunosensor using p-aminophenol redox cycling by NADH on a self-assembled monolayer and ferrocene-modified Au electrodes. Kwon SJ; Yang H; Jo K; Kwak J Analyst; 2008 Nov; 133(11):1599-604. PubMed ID: 18936839 [TBL] [Abstract][Full Text] [Related]
17. Simultaneous determination of catecholamines, uric acid and ascorbic acid at physiological levels using poly(N-methylpyrrole)/Pd-nanoclusters sensor. Atta NF; El-Kady MF; Galal A Anal Biochem; 2010 May; 400(1):78-88. PubMed ID: 20064483 [TBL] [Abstract][Full Text] [Related]
18. Cooperative use of cytochrome cd1 nitrite reductase and its redox partner cytochrome c552 to improve the selectivity of nitrite biosensing. Serra AS; Jorge SR; Silveira CM; Moura JJ; Jubete E; Ochoteco E; Cabañero G; Grande H; Almeida MG Anal Chim Acta; 2011 May; 693(1-2):41-6. PubMed ID: 21504809 [TBL] [Abstract][Full Text] [Related]
19. Fabrication of cytochrome c-poly(5-amino-2-napthalenesulfonic acid) electrode by one step procedure and direct electrochemistry of cytochrome c. Balamurugan A; Chen SM Biosens Bioelectron; 2008 Dec; 24(4):982-6. PubMed ID: 18774287 [TBL] [Abstract][Full Text] [Related]
20. Identification and quantitation of Bacillus globigii using metal enhanced electrochemical detection and capillary biosensor. Mwilu SK; Aluoch AO; Miller S; Wong P; Sadik OA; Fatah AA; Arcilesi RD Anal Chem; 2009 Sep; 81(18):7561-70. PubMed ID: 19689112 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]