These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
241 related articles for article (PubMed ID: 20659889)
1. Tumor necrosis factor receptor-associated factor-6 and ribosomal S6 kinase intracellular pathways link the angiotensin II AT1 receptor to the phosphorylation and activation of the IkappaB kinase complex in vascular smooth muscle cells. Doyon P; Servant MJ J Biol Chem; 2010 Oct; 285(40):30708-18. PubMed ID: 20659889 [TBL] [Abstract][Full Text] [Related]
2. Dual pathways for nuclear factor kappaB activation by angiotensin II in vascular smooth muscle: phosphorylation of p65 by IkappaB kinase and ribosomal kinase. Zhang L; Cheng J; Ma Y; Thomas W; Zhang J; Du J Circ Res; 2005 Nov; 97(10):975-82. PubMed ID: 16224066 [TBL] [Abstract][Full Text] [Related]
3. A new cellular signaling mechanism for angiotensin II activation of NF-kappaB: An IkappaB-independent, RSK-mediated phosphorylation of p65. Zhang L; Ma Y; Zhang J; Cheng J; Du J Arterioscler Thromb Vasc Biol; 2005 Jun; 25(6):1148-53. PubMed ID: 15802625 [TBL] [Abstract][Full Text] [Related]
4. The proinflammatory actions of angiotensin II are dependent on p65 phosphorylation by the IkappaB kinase complex. Douillette A; Bibeau-Poirier A; Gravel SP; Clément JF; Chénard V; Moreau P; Servant MJ J Biol Chem; 2006 May; 281(19):13275-13284. PubMed ID: 16513650 [TBL] [Abstract][Full Text] [Related]
5. Role of IκB kinase-β in the growth-promoting effects of angiotensin II in vitro and in vivo. Doyon P; van Zuylen WJ; Servant MJ Arterioscler Thromb Vasc Biol; 2013 Dec; 33(12):2850-7. PubMed ID: 24135021 [TBL] [Abstract][Full Text] [Related]
6. Novel changes in NF-{kappa}B activity during progression and regression phases of hyperplasia: role of MEK, ERK, and p38. Chandrakesan P; Ahmed I; Anwar T; Wang Y; Sarkar S; Singh P; Peleg S; Umar S J Biol Chem; 2010 Oct; 285(43):33485-33498. PubMed ID: 20710027 [TBL] [Abstract][Full Text] [Related]
7. An unexpected twist to the activation of IKKβ: TAK1 primes IKKβ for activation by autophosphorylation. Zhang J; Clark K; Lawrence T; Peggie MW; Cohen P Biochem J; 2014 Aug; 461(3):531-7. PubMed ID: 24911653 [TBL] [Abstract][Full Text] [Related]
8. Angiotensin II and other hypertrophic stimuli mediated by G protein-coupled receptors activate tyrosine kinase, mitogen-activated protein kinase, and 90-kD S6 kinase in cardiac myocytes. The critical role of Ca(2+)-dependent signaling. Sadoshima J; Qiu Z; Morgan JP; Izumo S Circ Res; 1995 Jan; 76(1):1-15. PubMed ID: 8001266 [TBL] [Abstract][Full Text] [Related]
9. Sensitivity of TLR4- and -7-induced NF kappa B1 p105-TPL2-ERK pathway to TNF-receptor-associated-factor-6 revealed by RNAi in mouse macrophages. Loniewski KJ; Patial S; Parameswaran N Mol Immunol; 2007 Jul; 44(15):3715-23. PubMed ID: 17507094 [TBL] [Abstract][Full Text] [Related]
10. Angiotensin II enhances AT1-Nox1 binding and stimulates arterial smooth muscle cell migration and proliferation through AT1, Nox1, and interleukin-18. Valente AJ; Yoshida T; Murthy SN; Sakamuri SS; Katsuyama M; Clark RA; Delafontaine P; Chandrasekar B Am J Physiol Heart Circ Physiol; 2012 Aug; 303(3):H282-96. PubMed ID: 22636674 [TBL] [Abstract][Full Text] [Related]
11. Dissociation of angiotensin II-stimulated activation of mitogen-activated protein kinase kinase from vascular contraction. Watts SW; Florian JA; Monroe KM J Pharmacol Exp Ther; 1998 Sep; 286(3):1431-8. PubMed ID: 9732408 [TBL] [Abstract][Full Text] [Related]
12. Herbal formula HMC05 prevents human aortic smooth muscle cell migration and proliferation by inhibiting the ERK1/2 MAPK signaling cascade. Kang YH; Yang IJ; Shin HM J Nat Med; 2012 Jan; 66(1):177-84. PubMed ID: 21833774 [TBL] [Abstract][Full Text] [Related]
13. Protein Kinase-Mediated Decision Between the Life and Death. Engin A Adv Exp Med Biol; 2021; 1275():1-33. PubMed ID: 33539010 [TBL] [Abstract][Full Text] [Related]
14. Protection by mTOR Inhibition on Zymosan-Induced Systemic Inflammatory Response and Oxidative/Nitrosative Stress: Contribution of mTOR/MEK1/ERK1/2/IKKβ/IκB-α/NF-κB Signalling Pathway. Sahan-Firat S; Temiz-Resitoglu M; Guden DS; Kucukkavruk SP; Tunctan B; Sari AN; Kocak Z; Malik KU Inflammation; 2018 Feb; 41(1):276-298. PubMed ID: 29110153 [TBL] [Abstract][Full Text] [Related]
15. Independent beta-arrestin2 and Gq/protein kinase Czeta pathways for ERK stimulated by angiotensin type 1A receptors in vascular smooth muscle cells converge on transactivation of the epidermal growth factor receptor. Kim J; Ahn S; Rajagopal K; Lefkowitz RJ J Biol Chem; 2009 May; 284(18):11953-62. PubMed ID: 19254952 [TBL] [Abstract][Full Text] [Related]
16. Ribosomal S6 kinase-1 modulates interleukin-1beta-induced persistent activation of NF-kappaB through phosphorylation of IkappaBbeta. Xu S; Bayat H; Hou X; Jiang B Am J Physiol Cell Physiol; 2006 Dec; 291(6):C1336-45. PubMed ID: 16822942 [TBL] [Abstract][Full Text] [Related]
17. Euscaphic acid isolated from roots of Rosa rugosa inhibits LPS-induced inflammatory responses via TLR4-mediated NF-κB inactivation in RAW 264.7 macrophages. Kim IT; Ryu S; Shin JS; Choi JH; Park HJ; Lee KT J Cell Biochem; 2012 Jun; 113(6):1936-46. PubMed ID: 22234926 [TBL] [Abstract][Full Text] [Related]
18. Angiotensin II increases CTGF expression via MAPKs/TGF-β1/TRAF6 pathway in atrial fibroblasts. Gu J; Liu X; Wang QX; Tan HW; Guo M; Jiang WF; Zhou L Exp Cell Res; 2012 Oct; 318(16):2105-15. PubMed ID: 22749815 [TBL] [Abstract][Full Text] [Related]