These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
207 related articles for article (PubMed ID: 20659902)
1. Murine protein serine/threonine kinase 38 stimulates TGF-beta signaling in a kinase-dependent manner via direct phosphorylation of Smad proteins. Seong HA; Jung H; Ha H J Biol Chem; 2010 Oct; 285(40):30959-70. PubMed ID: 20659902 [TBL] [Abstract][Full Text] [Related]
2. Zinc finger protein ZPR9 functions as an activator of AMPK-related serine/threonine kinase MPK38/MELK involved in ASK1/TGF-β/p53 signaling pathways. Seong HA; Manoharan R; Ha H Sci Rep; 2017 Feb; 7():42502. PubMed ID: 28195154 [TBL] [Abstract][Full Text] [Related]
3. Smad proteins differentially regulate obesity-induced glucose and lipid abnormalities and inflammation via class-specific control of AMPK-related kinase MPK38/MELK activity. Seong HA; Manoharan R; Ha H Cell Death Dis; 2018 May; 9(5):471. PubMed ID: 29700281 [TBL] [Abstract][Full Text] [Related]
4. A crucial role for the phosphorylation of STRAP at Ser(188) by MPK38 in STRAP-dependent cell death through ASK1, TGF-β, p53, and PI3K/PDK1 signaling pathways. Seong HA; Manoharan R; Ha H Cell Cycle; 2014; 13(21):3357-74. PubMed ID: 25485581 [TBL] [Abstract][Full Text] [Related]
5. 3-Phosphoinositide-dependent PDK1 negatively regulates transforming growth factor-beta-induced signaling in a kinase-dependent manner through physical interaction with Smad proteins. Seong HA; Jung H; Kim KT; Ha H J Biol Chem; 2007 Apr; 282(16):12272-89. PubMed ID: 17327236 [TBL] [Abstract][Full Text] [Related]
6. Thioredoxin inhibits MPK38-induced ASK1, TGF-β, and p53 function in a phosphorylation-dependent manner. Manoharan R; Seong HA; Ha H Free Radic Biol Med; 2013 Oct; 63():313-24. PubMed ID: 23747528 [TBL] [Abstract][Full Text] [Related]
7. PDK1 protein phosphorylation at Thr354 by murine protein serine-threonine kinase 38 contributes to negative regulation of PDK1 protein activity. Seong HA; Jung H; Manoharan R; Ha H J Biol Chem; 2012 Jun; 287(25):20811-22. PubMed ID: 22544756 [TBL] [Abstract][Full Text] [Related]
8. Murine protein serine/threonine kinase 38 activates apoptosis signal-regulating kinase 1 via Thr 838 phosphorylation. Jung H; Seong HA; Ha H J Biol Chem; 2008 Dec; 283(50):34541-53. PubMed ID: 18948261 [TBL] [Abstract][Full Text] [Related]
9. Inhibition of transforming growth factor-beta1-induced signaling and epithelial-to-mesenchymal transition by the Smad-binding peptide aptamer Trx-SARA. Zhao BM; Hoffmann FM Mol Biol Cell; 2006 Sep; 17(9):3819-31. PubMed ID: 16775010 [TBL] [Abstract][Full Text] [Related]
10. Murine protein serine-threonine kinase 38 activates p53 function through Ser15 phosphorylation. Seong HA; Ha H J Biol Chem; 2012 Jun; 287(25):20797-810. PubMed ID: 22532570 [TBL] [Abstract][Full Text] [Related]
11. Transcriptional cross-talk between Smad, ERK1/2, and p38 mitogen-activated protein kinase pathways regulates transforming growth factor-beta-induced aggrecan gene expression in chondrogenic ATDC5 cells. Watanabe H; de Caestecker MP; Yamada Y J Biol Chem; 2001 Apr; 276(17):14466-73. PubMed ID: 11278290 [TBL] [Abstract][Full Text] [Related]
12. Angiotensin II activates the Smad pathway in vascular smooth muscle cells by a transforming growth factor-beta-independent mechanism. Rodríguez-Vita J; Sánchez-López E; Esteban V; Rupérez M; Egido J; Ruiz-Ortega M Circulation; 2005 May; 111(19):2509-17. PubMed ID: 15883213 [TBL] [Abstract][Full Text] [Related]
13. Inactivation of smad-transforming growth factor beta signaling by Ca(2+)-calmodulin-dependent protein kinase II. Wicks SJ; Lui S; Abdel-Wahab N; Mason RM; Chantry A Mol Cell Biol; 2000 Nov; 20(21):8103-11. PubMed ID: 11027280 [TBL] [Abstract][Full Text] [Related]
14. Cross-talk between the p42/p44 MAP kinase and Smad pathways in transforming growth factor beta 1-induced furin gene transactivation. Blanchette F; Rivard N; Rudd P; Grondin F; Attisano L; Dubois CM J Biol Chem; 2001 Sep; 276(36):33986-94. PubMed ID: 11448947 [TBL] [Abstract][Full Text] [Related]
15. Role of Rho/ROCK and p38 MAP kinase pathways in transforming growth factor-beta-mediated Smad-dependent growth inhibition of human breast carcinoma cells in vivo. Kamaraju AK; Roberts AB J Biol Chem; 2005 Jan; 280(2):1024-36. PubMed ID: 15520018 [TBL] [Abstract][Full Text] [Related]
16. Transforming growth factor-beta stimulates parathyroid hormone-related protein and osteolytic metastases via Smad and mitogen-activated protein kinase signaling pathways. Kakonen SM; Selander KS; Chirgwin JM; Yin JJ; Burns S; Rankin WA; Grubbs BG; Dallas M; Cui Y; Guise TA J Biol Chem; 2002 Jul; 277(27):24571-8. PubMed ID: 11964407 [TBL] [Abstract][Full Text] [Related]
17. Smad7 abrogates transforming growth factor-beta1-mediated growth inhibition in COLO-357 cells through functional inactivation of the retinoblastoma protein. Boyer Arnold N; Korc M J Biol Chem; 2005 Jun; 280(23):21858-66. PubMed ID: 15811853 [TBL] [Abstract][Full Text] [Related]
18. Coordinate Activation of Redox-Dependent ASK1/TGF-β Signaling by a Multiprotein Complex (MPK38, ASK1, SMADs, ZPR9, and TRX) Improves Glucose and Lipid Metabolism in Mice. Seong HA; Manoharan R; Ha H Antioxid Redox Signal; 2016 Mar; 24(8):434-52. PubMed ID: 26421442 [TBL] [Abstract][Full Text] [Related]
19. Transforming Growth Factor-β Promotes Liver Tumorigenesis in Mice via Up-regulation of Snail. Moon H; Ju HL; Chung SI; Cho KJ; Eun JW; Nam SW; Han KH; Calvisi DF; Ro SW Gastroenterology; 2017 Nov; 153(5):1378-1391.e6. PubMed ID: 28734833 [TBL] [Abstract][Full Text] [Related]
20. KLF11 mediates a critical mechanism in TGF-beta signaling that is inactivated by Erk-MAPK in pancreatic cancer cells. Ellenrieder V; Buck A; Harth A; Jungert K; Buchholz M; Adler G; Urrutia R; Gress TM Gastroenterology; 2004 Aug; 127(2):607-20. PubMed ID: 15300592 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]