These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 20659928)

  • 1. On constitutive descriptors of the biaxial mechanical behaviour of human abdominal aorta and aneurysms.
    Ferruzzi J; Vorp DA; Humphrey JD
    J R Soc Interface; 2011 Mar; 8(56):435-50. PubMed ID: 20659928
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microstructure and mechanics of healthy and aneurysmatic abdominal aortas: experimental analysis and modelling.
    Niestrawska JA; Viertler C; Regitnig P; Cohnert TU; Sommer G; Holzapfel GA
    J R Soc Interface; 2016 Nov; 13(124):. PubMed ID: 27903785
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Acute mechanical effects of elastase on the infrarenal mouse aorta: implications for models of aneurysms.
    Collins MJ; Eberth JF; Wilson E; Humphrey JD
    J Biomech; 2012 Feb; 45(4):660-5. PubMed ID: 22236532
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The role of tissue remodeling in mechanics and pathogenesis of abdominal aortic aneurysms.
    Niestrawska JA; Regitnig P; Viertler C; Cohnert TU; Babu AR; Holzapfel GA
    Acta Biomater; 2019 Apr; 88():149-161. PubMed ID: 30735809
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Diameter-related variations of geometrical, mechanical, and mass fraction data in the anterior portion of abdominal aortic aneurysms.
    Tong J; Cohnert T; Holzapfel GA
    Eur J Vasc Endovasc Surg; 2015 Mar; 49(3):262-70. PubMed ID: 25617258
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effects of aneurysm on the biaxial mechanical behavior of human abdominal aorta.
    Vande Geest JP; Sacks MS; Vorp DA
    J Biomech; 2006; 39(7):1324-34. PubMed ID: 15885699
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of collagen fibres and elastic lamellae content on the mechanical behaviour of abdominal aortic aneurysms.
    Kobielarz M
    Acta Bioeng Biomech; 2020; 22(3):9-21. PubMed ID: 33518720
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Importance of initial aortic properties on the evolving regional anisotropy, stiffness and wall thickness of human abdominal aortic aneurysms.
    Wilson JS; Baek S; Humphrey JD
    J R Soc Interface; 2012 Sep; 9(74):2047-58. PubMed ID: 22491975
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanobiological stability: a new paradigm to understand the enlargement of aneurysms?
    Cyron CJ; Wilson JS; Humphrey JD
    J R Soc Interface; 2014 Nov; 11(100):20140680. PubMed ID: 25209402
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fluid-structure interaction in abdominal aortic aneurysms: effects of asymmetry and wall thickness.
    Scotti CM; Shkolnik AD; Muluk SC; Finol EA
    Biomed Eng Online; 2005 Nov; 4():64. PubMed ID: 16271141
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Investigation of material modeling in fluid-structure interaction analysis of an idealized three-layered abdominal aorta: aneurysm initiation and fully developed aneurysms.
    Simsek FG; Kwon YW
    J Biol Phys; 2015 Mar; 41(2):173-201. PubMed ID: 25624113
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanical wall stress in abdominal aortic aneurysm: influence of diameter and asymmetry.
    Vorp DA; Raghavan ML; Webster MW
    J Vasc Surg; 1998 Apr; 27(4):632-9. PubMed ID: 9576075
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanical properties of suprarenal and infrarenal abdominal aorta: implications for mouse models of aneurysms.
    Collins MJ; Bersi M; Wilson E; Humphrey JD
    Med Eng Phys; 2011 Dec; 33(10):1262-9. PubMed ID: 21742539
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of age on the elastic properties of the intraluminal thrombus and the thrombus-covered wall in abdominal aortic aneurysms: biaxial extension behaviour and material modelling.
    Tong J; Cohnert T; Regitnig P; Holzapfel GA
    Eur J Vasc Endovasc Surg; 2011 Aug; 42(2):207-19. PubMed ID: 21440466
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of variation in intraluminal thrombus constitutive properties on abdominal aortic aneurysm wall stress.
    Di Martino ES; Vorp DA
    Ann Biomed Eng; 2003; 31(7):804-9. PubMed ID: 12971613
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effect of material model formulation in the stress analysis of abdominal aortic aneurysms.
    Rodríguez JF; Martufi G; Doblaré M; Finol EA
    Ann Biomed Eng; 2009 Nov; 37(11):2218-21. PubMed ID: 19657744
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Elastin and collagen fibre microstructure of the human aorta in ageing and disease: a review.
    Tsamis A; Krawiec JT; Vorp DA
    J R Soc Interface; 2013 Jun; 10(83):20121004. PubMed ID: 23536538
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Use of regional mechanical properties of abdominal aortic aneurysms to advance finite element modeling of rupture risk.
    Tierney ÁP; Callanan A; McGloughlin TM
    J Endovasc Ther; 2012 Feb; 19(1):100-14. PubMed ID: 22313210
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Flow dynamics in expansions characterizing abdominal aorta aneurysms.
    Ekaterinaris JA; Ioannou CV; Katsamouris AN
    Ann Vasc Surg; 2006 May; 20(3):351-9. PubMed ID: 16779517
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Micromechanical characterization of intra-luminal thrombus tissue from abdominal aortic aneurysms.
    Gasser TC; Martufi G; Auer M; Folkesson M; Swedenborg J
    Ann Biomed Eng; 2010 Feb; 38(2):371-9. PubMed ID: 19921436
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.