BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 20660020)

  • 1. Glycopyrrolate abolishes the exercise-induced increase in cerebral perfusion in humans.
    Seifert T; Fisher JP; Young CN; Hartwich D; Ogoh S; Raven PB; Fadel PJ; Secher NH
    Exp Physiol; 2010 Oct; 95(10):1016-25. PubMed ID: 20660020
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Parasympathetic control of blood flow to the activated human brain.
    Truijen J; van Lieshout JJ
    Exp Physiol; 2010 Oct; 95(10):980-1. PubMed ID: 20847204
    [No Abstract]   [Full Text] [Related]  

  • 3. MCA Vmean and the arterial lactate-to-pyruvate ratio correlate during rhythmic handgrip.
    Rasmussen P; Plomgaard P; Krogh-Madsen R; Kim YS; van Lieshout JJ; Secher NH; Quistorff B
    J Appl Physiol (1985); 2006 Nov; 101(5):1406-11. PubMed ID: 16794025
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Middle cerebral artery blood velocity depends on cardiac output during exercise with a large muscle mass.
    Ide K; Pott F; Van Lieshout JJ; Secher NH
    Acta Physiol Scand; 1998 Jan; 162(1):13-20. PubMed ID: 9492897
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A cholinergic contribution to the circulatory responses evoked at the onset of handgrip exercise in humans.
    Vianna LC; Fadel PJ; Secher NH; Fisher JP
    Am J Physiol Regul Integr Comp Physiol; 2015 Apr; 308(7):R597-604. PubMed ID: 25589014
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cerebrovascular responses to cold pressor test during static exercise in humans.
    Vianna LC; Sales AR; da Nóbrega AC
    Clin Physiol Funct Imaging; 2012 Jan; 32(1):59-64. PubMed ID: 22152080
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of central command and muscle afferent activation on anterior cerebral artery blood velocity responses to calf exercise in humans.
    Vianna LC; Araújo CG; Fisher JP
    J Appl Physiol (1985); 2009 Oct; 107(4):1113-20. PubMed ID: 19679744
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sympathetic influence on cerebral blood flow and metabolism during exercise in humans.
    Seifert T; Secher NH
    Prog Neurobiol; 2011 Nov; 95(3):406-26. PubMed ID: 21963551
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dynamic blood pressure control and middle cerebral artery mean blood velocity variability at rest and during exercise in humans.
    Ogoh S; Dalsgaard MK; Secher NH; Raven PB
    Acta Physiol (Oxf); 2007 Sep; 191(1):3-14. PubMed ID: 17506866
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Differential responses to sympathetic stimulation in the cerebral and brachial circulations during rhythmic handgrip exercise in humans.
    Hartwich D; Fowler KL; Wynn LJ; Fisher JP
    Exp Physiol; 2010 Nov; 95(11):1089-97. PubMed ID: 20851860
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cerebral oxygenation decreases during exercise in humans with beta-adrenergic blockade.
    Seifert T; Rasmussen P; Secher NH; Nielsen HB
    Acta Physiol (Oxf); 2009 Jul; 196(3):295-302. PubMed ID: 19053964
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Middle cerebral artery blood velocity during exercise with beta-1 adrenergic and unilateral stellate ganglion blockade in humans.
    Ide K; Boushel R; Sørensen HM; Fernandes A; Cai Y; Pott F; Secher NH
    Acta Physiol Scand; 2000 Sep; 170(1):33-8. PubMed ID: 10971220
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Middle cerebral artery blood velocity and plasma catecholamines during exercise.
    Pott F; Jensen K; Hansen H; Christensen NJ; Lassen NA; Secher NH
    Acta Physiol Scand; 1996 Dec; 158(4):349-56. PubMed ID: 8971256
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Muscle tensing during standing: effects on cerebral tissue oxygenation and cerebral artery blood velocity.
    van Lieshout JJ; Pott F; Madsen PL; van Goudoever J; Secher NH
    Stroke; 2001 Jul; 32(7):1546-51. PubMed ID: 11441199
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Middle cerebral artery diameter changes during rhythmic handgrip exercise in humans.
    Verbree J; Bronzwaer A; van Buchem MA; Daemen M; van Lieshout JJ; van Osch M
    J Cereb Blood Flow Metab; 2017 Aug; 37(8):2921-2927. PubMed ID: 27837189
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Central command and the increase in middle cerebral artery blood flow velocity during static arm exercise in women.
    Sato K; Sadamoto T; Ueda-Sasahara C; Shibuya K; Shimizu-Okuyama S; Osada T; Kamo M; Saito M; Kagaya A
    Exp Physiol; 2009 Nov; 94(11):1132-8. PubMed ID: 19648482
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effect of phenylephrine on arterial and venous cerebral blood flow in healthy subjects.
    Ogoh S; Sato K; Fisher JP; Seifert T; Overgaard M; Secher NH
    Clin Physiol Funct Imaging; 2011 Nov; 31(6):445-51. PubMed ID: 21981455
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cerebral blood flow and metabolism during exercise.
    Ide K; Secher NH
    Prog Neurobiol; 2000 Jul; 61(4):397-414. PubMed ID: 10727781
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Selective α1-adrenergic blockade disturbs the regional distribution of cerebral blood flow during static handgrip exercise.
    Fernandes IA; Mattos JD; Campos MO; Machado AC; Rocha MP; Rocha NG; Vianna LC; Nobrega AC
    Am J Physiol Heart Circ Physiol; 2016 Jun; 310(11):H1541-8. PubMed ID: 27016578
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phenylephrine decreases frontal lobe oxygenation at rest but not during moderately intense exercise.
    Brassard P; Seifert T; Wissenberg M; Jensen PM; Hansen CK; Secher NH
    J Appl Physiol (1985); 2010 Jun; 108(6):1472-8. PubMed ID: 20223999
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.