These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 20660108)

  • 1. Structural antioxidant defense mechanisms in the mammalian and nonmammalian kidney: different solutions to the same problem?
    O'Connor PM; Evans RG
    Am J Physiol Regul Integr Comp Physiol; 2010 Sep; 299(3):R723-7. PubMed ID: 20660108
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A mathematical model of diffusional shunting of oxygen from arteries to veins in the kidney.
    Gardiner BS; Smith DW; O'Connor PM; Evans RG
    Am J Physiol Renal Physiol; 2011 Jun; 300(6):F1339-52. PubMed ID: 21367922
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Renal preglomerular arterial-venous O2 shunting is a structural anti-oxidant defence mechanism of the renal cortex.
    O'Connor PM; Anderson WP; Kett MM; Evans RG
    Clin Exp Pharmacol Physiol; 2006 Jul; 33(7):637-41. PubMed ID: 16789933
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Diffusive shunting of gases and other molecules in the renal vasculature: physiological and evolutionary significance.
    Ngo JP; Ow CP; Gardiner BS; Kar S; Pearson JT; Smith DW; Evans RG
    Am J Physiol Regul Integr Comp Physiol; 2016 Nov; 311(5):R797-R810. PubMed ID: 27488891
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Intrarenal oxygenation: unique challenges and the biophysical basis of homeostasis.
    Evans RG; Gardiner BS; Smith DW; O'Connor PM
    Am J Physiol Renal Physiol; 2008 Nov; 295(5):F1259-70. PubMed ID: 18550645
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A pseudo-three-dimensional model for quantification of oxygen diffusion from preglomerular arteries to renal tissue and renal venous blood.
    Lee CJ; Ngo JP; Kar S; Gardiner BS; Evans RG; Smith DW
    Am J Physiol Renal Physiol; 2017 Aug; 313(2):F237-F253. PubMed ID: 28381464
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Renal oxygenation: preglomerular vasculature is an unlikely contributor to renal oxygen shunting.
    Olgac U; Kurtcuoglu V
    Am J Physiol Renal Physiol; 2015 Apr; 308(7):F671-88. PubMed ID: 25503734
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Renal arteriovenous oxygen shunting.
    Kuo W; Kurtcuoglu V
    Curr Opin Nephrol Hypertens; 2017 Jul; 26(4):290-295. PubMed ID: 28399018
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Diffusive oxygen shunting between vessels in the preglomerular renal vasculature: anatomic observations and computational modeling.
    Gardiner BS; Thompson SL; Ngo JP; Smith DW; Abdelkader A; Broughton BR; Bertram JF; Evans RG
    Am J Physiol Renal Physiol; 2012 Sep; 303(5):F605-18. PubMed ID: 22674022
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Renal oxygen delivery: matching delivery to metabolic demand.
    O'Connor PM
    Clin Exp Pharmacol Physiol; 2006 Oct; 33(10):961-7. PubMed ID: 17002675
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Haemodynamic influences on kidney oxygenation: clinical implications of integrative physiology.
    Evans RG; Ince C; Joles JA; Smith DW; May CN; O'Connor PM; Gardiner BS
    Clin Exp Pharmacol Physiol; 2013 Feb; 40(2):106-22. PubMed ID: 23167537
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Vascular geometry and oxygen diffusion in the vicinity of artery-vein pairs in the kidney.
    Ngo JP; Kar S; Kett MM; Gardiner BS; Pearson JT; Smith DW; Ludbrook J; Bertram JF; Evans RG
    Am J Physiol Renal Physiol; 2014 Nov; 307(10):F1111-22. PubMed ID: 25209866
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evidence that renal arterial-venous oxygen shunting contributes to dynamic regulation of renal oxygenation.
    Leong CL; Anderson WP; O'Connor PM; Evans RG
    Am J Physiol Renal Physiol; 2007 Jun; 292(6):F1726-33. PubMed ID: 17327497
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparative anatomical study of the kidney position in amniotes using the origin of the renal artery as a landmark.
    Yokota E; Kawashima T; Ohkubo F; Sasaki H
    Okajimas Folia Anat Jpn; 2005 Mar; 81(6):135-42. PubMed ID: 15832867
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Living with stress: regulation of antioxidant defense genes in the subterranean, hypoxia-tolerant mole rat, Spalax.
    Schülke S; Dreidax D; Malik A; Burmester T; Nevo E; Band M; Avivi A; Hankeln T
    Gene; 2012 Jun; 500(2):199-206. PubMed ID: 22441129
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Oxygen transport across vasa recta in the renal medulla.
    Zhang W; Edwards A
    Am J Physiol Heart Circ Physiol; 2002 Sep; 283(3):H1042-55. PubMed ID: 12181134
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Alterations in regional kidney oxygenation during expansion of extracellular fluid volume in conscious healthy sheep.
    Lankadeva YR; Evans RG; Kosaka J; Booth LC; Iguchi N; Bellomo R; May CN
    Am J Physiol Regul Integr Comp Physiol; 2018 Dec; 315(6):R1242-R1250. PubMed ID: 30332304
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Letter to the editor: "The plausibility of arterial-to-venous oxygen shunting in the kidney: it all depends on radial geometry".
    Evans RG; Smith DW; Khan Z; Ngo JP; Gardiner BS
    Am J Physiol Renal Physiol; 2015 Jul; 309(2):F179-80. PubMed ID: 26180257
    [No Abstract]   [Full Text] [Related]  

  • 19. Reply to "Letter to the editor: 'The plausibility of arterial-to-venous oxygen shunting in the kidney: it all depends on radial geometry'".
    Olgac U; Kurtcuoglu V
    Am J Physiol Renal Physiol; 2015 Jul; 309(2):F181-2. PubMed ID: 26180258
    [No Abstract]   [Full Text] [Related]  

  • 20. Nephron pO2 and renal oxygen usage in the hypertensive rat kidney.
    Welch WJ; Baumgärtl H; Lübbers D; Wilcox CS
    Kidney Int; 2001 Jan; 59(1):230-7. PubMed ID: 11135075
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.