BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

474 related articles for article (PubMed ID: 20660112)

  • 1. Mitochondrial loss, dysfunction and altered dynamics in Huntington's disease.
    Kim J; Moody JP; Edgerly CK; Bordiuk OL; Cormier K; Smith K; Beal MF; Ferrante RJ
    Hum Mol Genet; 2010 Oct; 19(20):3919-35. PubMed ID: 20660112
    [TBL] [Abstract][Full Text] [Related]  

  • 2. S-nitrosylation of dynamin-related protein 1 mediates mutant huntingtin-induced mitochondrial fragmentation and neuronal injury in Huntington's disease.
    Haun F; Nakamura T; Shiu AD; Cho DH; Tsunemi T; Holland EA; La Spada AR; Lipton SA
    Antioxid Redox Signal; 2013 Oct; 19(11):1173-84. PubMed ID: 23641925
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mutant huntingtin's interaction with mitochondrial protein Drp1 impairs mitochondrial biogenesis and causes defective axonal transport and synaptic degeneration in Huntington's disease.
    Shirendeb UP; Calkins MJ; Manczak M; Anekonda V; Dufour B; McBride JL; Mao P; Reddy PH
    Hum Mol Genet; 2012 Jan; 21(2):406-20. PubMed ID: 21997870
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Abnormal mitochondrial dynamics, mitochondrial loss and mutant huntingtin oligomers in Huntington's disease: implications for selective neuronal damage.
    Shirendeb U; Reddy AP; Manczak M; Calkins MJ; Mao P; Tagle DA; Reddy PH
    Hum Mol Genet; 2011 Apr; 20(7):1438-55. PubMed ID: 21257639
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Impaired mitochondrial dynamics and Nrf2 signaling contribute to compromised responses to oxidative stress in striatal cells expressing full-length mutant huntingtin.
    Jin YN; Yu YV; Gundemir S; Jo C; Cui M; Tieu K; Johnson GV
    PLoS One; 2013; 8(3):e57932. PubMed ID: 23469253
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of overexpression of huntingtin proteins on mitochondrial integrity.
    Wang H; Lim PJ; Karbowski M; Monteiro MJ
    Hum Mol Genet; 2009 Feb; 18(4):737-52. PubMed ID: 19039036
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mitochondrial cristae remodelling is associated with disrupted OPA1 oligomerisation in the Huntington's disease R6/2 fragment model.
    Hering T; Kojer K; Birth N; Hallitsch J; Taanman JW; Orth M
    Exp Neurol; 2017 Feb; 288():167-175. PubMed ID: 27889468
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Drp1 phosphorylation by MAPK1 causes mitochondrial dysfunction in cell culture model of Huntington's disease.
    Roe AJ; Qi X
    Biochem Biophys Res Commun; 2018 Feb; 496(2):706-711. PubMed ID: 29397067
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mutant huntingtin binds the mitochondrial fission GTPase dynamin-related protein-1 and increases its enzymatic activity.
    Song W; Chen J; Petrilli A; Liot G; Klinglmayr E; Zhou Y; Poquiz P; Tjong J; Pouladi MA; Hayden MR; Masliah E; Ellisman M; Rouiller I; Schwarzenbacher R; Bossy B; Perkins G; Bossy-Wetzel E
    Nat Med; 2011 Mar; 17(3):377-82. PubMed ID: 21336284
    [TBL] [Abstract][Full Text] [Related]  

  • 10. ATAD3A oligomerization causes neurodegeneration by coupling mitochondrial fragmentation and bioenergetics defects.
    Zhao Y; Sun X; Hu D; Prosdocimo DA; Hoppel C; Jain MK; Ramachandran R; Qi X
    Nat Commun; 2019 Mar; 10(1):1371. PubMed ID: 30914652
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Could successful (mitochondrial) networking help prevent Huntington's disease?
    Oliveira JM; Lightowlers RN
    EMBO Mol Med; 2010 Dec; 2(12):487-9. PubMed ID: 21117121
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Increased mitochondrial fission and neuronal dysfunction in Huntington's disease: implications for molecular inhibitors of excessive mitochondrial fission.
    Reddy PH
    Drug Discov Today; 2014 Jul; 19(7):951-5. PubMed ID: 24681059
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mitochondrial DNA damage is associated with reduced mitochondrial bioenergetics in Huntington's disease.
    Siddiqui A; Rivera-Sánchez S; Castro Mdel R; Acevedo-Torres K; Rane A; Torres-Ramos CA; Nicholls DG; Andersen JK; Ayala-Torres S
    Free Radic Biol Med; 2012 Oct; 53(7):1478-88. PubMed ID: 22709585
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Raft-like microdomains play a key role in mitochondrial impairment in lymphoid cells from patients with Huntington's disease.
    Ciarlo L; Manganelli V; Matarrese P; Garofalo T; Tinari A; Gambardella L; Marconi M; Grasso M; Misasi R; Sorice M; Malorni W
    J Lipid Res; 2012 Oct; 53(10):2057-2068. PubMed ID: 22773688
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Increased calbindin-D28k immunoreactivity in striatal projection neurons of R6/2 Huntington's disease transgenic mice.
    Sun Z; Wang HB; Deng YP; Lei WL; Xie JP; Meade CA; Del Mar N; Goldowitz D; Reiner A
    Neurobiol Dis; 2005 Dec; 20(3):907-17. PubMed ID: 15990326
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Defective mitochondrial disulfide relay system, altered mitochondrial morphology and function in Huntington's disease.
    Napoli E; Wong S; Hung C; Ross-Inta C; Bomdica P; Giulivi C
    Hum Mol Genet; 2013 Mar; 22(5):989-1004. PubMed ID: 23197653
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Juvenile Huntington's Disease Skin Fibroblasts Respond with Elevated Parkin Level and Increased Proteasome Activity as a Potential Mechanism to Counterbalance the Pathological Consequences of Mutant Huntingtin Protein.
    Aladdin A; Király R; Boto P; Regdon Z; Tar K
    Int J Mol Sci; 2019 Oct; 20(21):. PubMed ID: 31717806
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transcriptional repression of PGC-1alpha by mutant huntingtin leads to mitochondrial dysfunction and neurodegeneration.
    Cui L; Jeong H; Borovecki F; Parkhurst CN; Tanese N; Krainc D
    Cell; 2006 Oct; 127(1):59-69. PubMed ID: 17018277
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mutant huntingtin, abnormal mitochondrial dynamics, defective axonal transport of mitochondria, and selective synaptic degeneration in Huntington's disease.
    Reddy PH; Shirendeb UP
    Biochim Biophys Acta; 2012 Feb; 1822(2):101-10. PubMed ID: 22080977
    [TBL] [Abstract][Full Text] [Related]  

  • 20. PPAR-δ is repressed in Huntington's disease, is required for normal neuronal function and can be targeted therapeutically.
    Dickey AS; Pineda VV; Tsunemi T; Liu PP; Miranda HC; Gilmore-Hall SK; Lomas N; Sampat KR; Buttgereit A; Torres MJ; Flores AL; Arreola M; Arbez N; Akimov SS; Gaasterland T; Lazarowski ER; Ross CA; Yeo GW; Sopher BL; Magnuson GK; Pinkerton AB; Masliah E; La Spada AR
    Nat Med; 2016 Jan; 22(1):37-45. PubMed ID: 26642438
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 24.