BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

282 related articles for article (PubMed ID: 20660190)

  • 21. Molecular Determinants of Epistasis in HIV-1 Protease: Elucidating the Interdependence of L89V and L90M Mutations in Resistance.
    Henes M; Kosovrasti K; Lockbaum GJ; Leidner F; Nachum GS; Nalivaika EA; Bolon DNA; Kurt Yilmaz N; Schiffer CA; Whitfield TW
    Biochemistry; 2019 Sep; 58(35):3711-3726. PubMed ID: 31386353
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Phenotypic cross-resistance to nelfinavir: the role of prior antiretroviral therapy and the number of mutations in the protease gene.
    Dronda F; Casado JL; Moreno S; Hertogs K; García-Arata I; Antela A; Pérez-Elías MJ; Ruiz L; Larder B;
    AIDS Res Hum Retroviruses; 2001 Feb; 17(3):211-5. PubMed ID: 11177403
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Non-cleavage site gag mutations in amprenavir-resistant human immunodeficiency virus type 1 (HIV-1) predispose HIV-1 to rapid acquisition of amprenavir resistance but delay development of resistance to other protease inhibitors.
    Aoki M; Venzon DJ; Koh Y; Aoki-Ogata H; Miyakawa T; Yoshimura K; Maeda K; Mitsuya H
    J Virol; 2009 Apr; 83(7):3059-68. PubMed ID: 19176623
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Persistence of mutations during replication of an HIV library containing combinations of selected protease mutations.
    Song W; Maeda Y; Tenpaku A; Harada S; Yusa K
    Antiviral Res; 2004 Mar; 61(3):173-80. PubMed ID: 15168798
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Impact of frequent natural polymorphisms at the protease gene on the in vitro susceptibility to protease inhibitors in HIV-1 non-B subtypes.
    Holguín A; Paxinos E; Hertogs K; Womac C; Soriano V
    J Clin Virol; 2004 Nov; 31(3):215-20. PubMed ID: 15465415
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Structural Studies of a Rationally Selected Multi-Drug Resistant HIV-1 Protease Reveal Synergistic Effect of Distal Mutations on Flap Dynamics.
    Agniswamy J; Louis JM; Roche J; Harrison RW; Weber IT
    PLoS One; 2016; 11(12):e0168616. PubMed ID: 27992544
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Structural Adaptation of Darunavir Analogues against Primary Mutations in HIV-1 Protease.
    Lockbaum GJ; Leidner F; Rusere LN; Henes M; Kosovrasti K; Nachum GS; Nalivaika EA; Ali A; Yilmaz NK; Schiffer CA
    ACS Infect Dis; 2019 Feb; 5(2):316-325. PubMed ID: 30543749
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Thermodynamic and structural analysis of HIV protease resistance to darunavir - analysis of heavily mutated patient-derived HIV-1 proteases.
    Kožíšek M; Lepšík M; Grantz Šašková K; Brynda J; Konvalinka J; Rezáčová P
    FEBS J; 2014 Apr; 281(7):1834-47. PubMed ID: 24785545
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Structural insights into the South African HIV-1 subtype C protease: impact of hinge region dynamics and flap flexibility in drug resistance.
    Naicker P; Achilonu I; Fanucchi S; Fernandes M; Ibrahim MA; Dirr HW; Soliman ME; Sayed Y
    J Biomol Struct Dyn; 2013 Dec; 31(12):1370-80. PubMed ID: 23140382
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Mutational patterns and correlated amino acid substitutions in the HIV-1 protease after virological failure to nelfinavir- and lopinavir/ritonavir-based treatments.
    Garriga C; Pérez-Elías MJ; Delgado R; Ruiz L; Nájera R; Pumarola T; Alonso-Socas Mdel M; García-Bujalance S; Menéndez-Arias L;
    J Med Virol; 2007 Nov; 79(11):1617-28. PubMed ID: 17854027
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effect of flap mutations on structure of HIV-1 protease and inhibition by saquinavir and darunavir.
    Liu F; Kovalevsky AY; Tie Y; Ghosh AK; Harrison RW; Weber IT
    J Mol Biol; 2008 Aug; 381(1):102-15. PubMed ID: 18597780
    [TBL] [Abstract][Full Text] [Related]  

  • 32. PL-100, a novel HIV-1 protease inhibitor displaying a high genetic barrier to resistance: an in vitro selection study.
    Dandache S; Coburn CA; Oliveira M; Allison TJ; Holloway MK; Wu JJ; Stranix BR; Panchal C; Wainberg MA; Vacca JP
    J Med Virol; 2008 Dec; 80(12):2053-63. PubMed ID: 19040279
    [TBL] [Abstract][Full Text] [Related]  

  • 33. TMC310911, a novel human immunodeficiency virus type 1 protease inhibitor, shows in vitro an improved resistance profile and higher genetic barrier to resistance compared with current protease inhibitors.
    Dierynck I; Van Marck H; Van Ginderen M; Jonckers TH; Nalam MN; Schiffer CA; Raoof A; Kraus G; Picchio G
    Antimicrob Agents Chemother; 2011 Dec; 55(12):5723-31. PubMed ID: 21896904
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Structural analyses of 2015-updated drug-resistant mutations in HIV-1 protease: an implication of protease inhibitor cross-resistance.
    Su CT; Ling WL; Lua WH; Haw YX; Gan SK
    BMC Bioinformatics; 2016 Dec; 17(Suppl 19):500. PubMed ID: 28155724
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Structural and kinetic analysis of drug resistant mutants of HIV-1 protease.
    Mahalingam B; Louis JM; Reed CC; Adomat JM; Krouse J; Wang YF; Harrison RW; Weber IT
    Eur J Biochem; 1999 Jul; 263(1):238-45. PubMed ID: 10429209
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A mutation in human immunodeficiency virus type 1 protease at position 88, located outside the active site, confers resistance to the hydroxyethylurea inhibitor SC-55389A.
    Smidt ML; Potts KE; Tucker SP; Blystone L; Stiebel TR; Stallings WC; McDonald JJ; Pillay D; Richman DD; Bryant ML
    Antimicrob Agents Chemother; 1997 Mar; 41(3):515-22. PubMed ID: 9055985
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Combining mutations in HIV-1 protease to understand mechanisms of resistance.
    Mahalingam B; Boross P; Wang YF; Louis JM; Fischer CC; Tozser J; Harrison RW; Weber IT
    Proteins; 2002 Jul; 48(1):107-16. PubMed ID: 12012342
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Secondary mutations M36I and A71V in the human immunodeficiency virus type 1 protease can provide an advantage for the emergence of the primary mutation D30N.
    Clemente JC; Hemrajani R; Blum LE; Goodenow MM; Dunn BM
    Biochemistry; 2003 Dec; 42(51):15029-35. PubMed ID: 14690411
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Defective hydrophobic sliding mechanism and active site expansion in HIV-1 protease drug resistant variant Gly48Thr/Leu89Met: mechanisms for the loss of saquinavir binding potency.
    Goldfarb NE; Ohanessian M; Biswas S; McGee TD; Mahon BP; Ostrov DA; Garcia J; Tang Y; McKenna R; Roitberg A; Dunn BM
    Biochemistry; 2015 Jan; 54(2):422-33. PubMed ID: 25513833
    [TBL] [Abstract][Full Text] [Related]  

  • 40. N88D facilitates the co-occurrence of D30N and L90M and the development of multidrug resistance in HIV type 1 protease following nelfinavir treatment failure.
    Mitsuya Y; Winters MA; Fessel WJ; Rhee SY; Hurley L; Horberg M; Schiffer CA; Zolopa AR; Shafer RW
    AIDS Res Hum Retroviruses; 2006 Dec; 22(12):1300-5. PubMed ID: 17209774
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.