These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 20660429)

  • 1. Manual skill generalization enhanced by negative viscosity.
    Huang FC; Patton JL; Mussa-Ivaldi FA
    J Neurophysiol; 2010 Oct; 104(4):2008-19. PubMed ID: 20660429
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluation of negative viscosity as upper extremity training for stroke survivors.
    Huang FC; Patton JL
    IEEE Int Conf Rehabil Robot; 2011; 2011():5975514. PubMed ID: 22275710
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Negative viscosity can enhance learning of inertial dynamics.
    Huang FC; Patton JL; Mussa-Ivaldi FA
    IEEE Int Conf Rehabil Robot; 2009 Jun; 2009():474-479. PubMed ID: 26380041
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Robot-amplified manual exploration improves load identification.
    Huang FC; Patton JL; Mussa-Ivaldi FA
    IFMBE Proc; 2009 Sep; 25(9):335-338. PubMed ID: 26167170
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Augmented dynamics and motor exploration as training for stroke.
    Huang FC; Patton JL
    IEEE Trans Biomed Eng; 2013 Mar; 60(3):838-44. PubMed ID: 22481803
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of Position- and Velocity-Dependent Forces on Reaching Movements at Different Speeds.
    Summa S; Casadio M; Sanguineti V
    Front Hum Neurosci; 2016; 10():609. PubMed ID: 27965559
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Simultaneous coordinate representations are influenced by visual feedback in a motor learning task.
    Parmar PN; Huang FC; Patton JL
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():6762-8. PubMed ID: 22255891
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Error generalization as a function of velocity and duration: human reaching movements.
    Francis JT
    Exp Brain Res; 2008 Mar; 186(1):23-37. PubMed ID: 18030456
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Neural Tuning Functions Underlie Both Generalization and Interference.
    Howard IS; Franklin DW
    PLoS One; 2015; 10(6):e0131268. PubMed ID: 26110871
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Increasing viscosity and inertia using a robotically controlled pen improves handwriting in children.
    Ben-Pazi H; Ishihara A; Kukke S; Sanger TD
    J Child Neurol; 2010 Jun; 25(6):674-80. PubMed ID: 19794098
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Trial-by-trial adaptation of movements during mental practice under force field.
    Anwar MN; Khan SH
    Comput Math Methods Med; 2013; 2013():109497. PubMed ID: 23737857
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Motor imagery facilitates force field learning.
    Anwar MN; Tomi N; Ito K
    Brain Res; 2011 Jun; 1395():21-9. PubMed ID: 21555118
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spatial generalization from learning dynamics of reaching movements.
    Shadmehr R; Moussavi ZM
    J Neurosci; 2000 Oct; 20(20):7807-15. PubMed ID: 11027245
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Motor force field learning influences visual processing of target motion.
    Brown LE; Wilson ET; Goodale MA; Gribble PL
    J Neurosci; 2007 Sep; 27(37):9975-83. PubMed ID: 17855611
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modifying upper-limb inter-joint coordination in healthy subjects by training with a robotic exoskeleton.
    Proietti T; Guigon E; Roby-Brami A; Jarrassé N
    J Neuroeng Rehabil; 2017 Jun; 14(1):55. PubMed ID: 28606179
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of age-related modifications of upper limb motor control strategies in a new dynamic environment.
    Cesqui B; Macrì G; Dario P; Micera S
    J Neuroeng Rehabil; 2008 Nov; 5():31. PubMed ID: 19019228
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of robotic training forces that either enhance or reduce error in chronic hemiparetic stroke survivors.
    Patton JL; Stoykov ME; Kovic M; Mussa-Ivaldi FA
    Exp Brain Res; 2006 Jan; 168(3):368-83. PubMed ID: 16249912
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Error-enhancing robot therapy to induce motor control improvement in childhood onset primary dystonia.
    Casellato C; Pedrocchi A; Zorzi G; Rizzi G; Ferrigno G; Nardocci N
    J Neuroeng Rehabil; 2012 Jul; 9():46. PubMed ID: 22824547
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Generalization of dynamics learning across changes in movement amplitude.
    Mattar AA; Ostry DJ
    J Neurophysiol; 2010 Jul; 104(1):426-38. PubMed ID: 20463200
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Features of motor performance that drive adaptation in rapid hand movements.
    Novak KE; Miller LE; Houk JC
    Exp Brain Res; 2003 Feb; 148(3):388-400. PubMed ID: 12541149
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.