These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

232 related articles for article (PubMed ID: 20660565)

  • 1. Force and power generating mechanism(s) in active muscle as revealed from temperature perturbation studies.
    Ranatunga KW
    J Physiol; 2010 Oct; 588(Pt 19):3657-70. PubMed ID: 20660565
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Crossbridge mechanism(s) examined by temperature perturbation studies on muscle.
    Ranatunga KW; Coupland ME
    Adv Exp Med Biol; 2010; 682():247-66. PubMed ID: 20824530
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Temperature jump induced force generation in rabbit muscle fibres gets faster with shortening and shows a biphasic dependence on velocity.
    Ranatunga KW; Roots H; Offer GW
    J Physiol; 2010 Feb; 588(Pt 3):479-93. PubMed ID: 19948657
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Endothermic force generation, temperature-jump experiments and effects of increased [MgADP] in rabbit psoas muscle fibres.
    Coupland ME; Pinniger GJ; Ranatunga KW
    J Physiol; 2005 Sep; 567(Pt 2):471-92. PubMed ID: 15975981
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Force generation examined by laser temperature-jumps in shortening and lengthening mammalian (rabbit psoas) muscle fibres.
    Ranatunga KW; Coupland ME; Pinniger GJ; Roots H; Offer GW
    J Physiol; 2007 Nov; 585(Pt 1):263-77. PubMed ID: 17916609
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Temperature Effects on Force and Actin⁻Myosin Interaction in Muscle: A Look Back on Some Experimental Findings.
    Ranatunga KW
    Int J Mol Sci; 2018 May; 19(5):. PubMed ID: 29786656
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Force generation induced by rapid temperature jumps in intact mammalian (rat) skeletal muscle fibres.
    Coupland ME; Ranatunga KW
    J Physiol; 2003 Apr; 548(Pt 2):439-49. PubMed ID: 12611915
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The endothermic ATP hydrolysis and crossbridge attachment steps drive the increase of force with temperature in isometric and shortening muscle.
    Offer G; Ranatunga KW
    J Physiol; 2015 Apr; 593(8):1997-2016. PubMed ID: 25564737
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phosphate increase during fatigue affects crossbridge kinetics in intact mouse muscle at physiological temperature.
    Nocella M; Cecchi G; Colombini B
    J Physiol; 2017 Jul; 595(13):4317-4328. PubMed ID: 28332714
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular step(s) of force generation: temperature-perturbation experiments on muscle fibres.
    Ranatunga KW; Coupland ME
    Adv Exp Med Biol; 2003; 538():441-57; discussion 457. PubMed ID: 15098690
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Kinetic and thermodynamic studies of the cross-bridge cycle in rabbit psoas muscle fibers.
    Zhao Y; Kawai M
    Biophys J; 1994 Oct; 67(4):1655-68. PubMed ID: 7819497
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Indirect coupling of phosphate release to de novo tension generation during muscle contraction.
    Davis JS; Rodgers ME
    Proc Natl Acad Sci U S A; 1995 Nov; 92(23):10482-6. PubMed ID: 7479824
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Endothermic force generation in skinned cardiac muscle from rat.
    Ranatunga KW
    J Muscle Res Cell Motil; 1999 Aug; 20(5-6):489-96. PubMed ID: 10555067
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Endothermic force generation in fast and slow mammalian (rabbit) muscle fibers.
    Ranatunga KW
    Biophys J; 1996 Oct; 71(4):1905-13. PubMed ID: 8889165
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of the tension responses to ramp shortening and lengthening in intact mammalian muscle fibres: crossbridge and non-crossbridge contributions.
    Roots H; Offer GW; Ranatunga KW
    J Muscle Res Cell Motil; 2007; 28(2-3):123-39. PubMed ID: 17610136
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evidence for increased low force cross-bridge population in shortening skinned skeletal muscle fibers: implications for actomyosin kinetics.
    Iwamoto H
    Biophys J; 1995 Sep; 69(3):1022-35. PubMed ID: 8519957
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An analysis of the temperature dependence of force, during steady shortening at different velocities, in (mammalian) fast muscle fibres.
    Roots H; Ranatunga KW
    J Muscle Res Cell Motil; 2008; 29(1):9-24. PubMed ID: 18523851
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The efficiency of contraction in rabbit skeletal muscle fibres, determined from the rate of release of inorganic phosphate.
    He ZH; Chillingworth RK; Brune M; Corrie JE; Webb MR; Ferenczi MA
    J Physiol; 1999 Jun; 517 ( Pt 3)(Pt 3):839-54. PubMed ID: 10358123
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Force and number of myosin motors during muscle shortening and the coupling with the release of the ATP hydrolysis products.
    Caremani M; Melli L; Dolfi M; Lombardi V; Linari M
    J Physiol; 2015 Aug; 593(15):3313-32. PubMed ID: 26041599
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanism of force enhancement during and after lengthening of active muscle: a temperature dependence study.
    Roots H; Pinniger GJ; Offer GW; Ranatunga KW
    J Muscle Res Cell Motil; 2012 Oct; 33(5):313-25. PubMed ID: 22706970
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.