These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
480 related articles for article (PubMed ID: 20660628)
21. Loss of the tumor suppressor BIN1 enables ATM Ser/Thr kinase activation by the nuclear protein E2F1 and renders cancer cells resistant to cisplatin. Folk WP; Kumari A; Iwasaki T; Pyndiah S; Johnson JC; Cassimere EK; Abdulovic-Cui AL; Sakamuro D J Biol Chem; 2019 Apr; 294(14):5700-5719. PubMed ID: 30733337 [TBL] [Abstract][Full Text] [Related]
23. Regulation of DNA damage following termination of Hedgehog (HH) survival signaling at the level of the GLI genes in human colon cancer. Agyeman A; Mazumdar T; Houghton JA Oncotarget; 2012 Aug; 3(8):854-68. PubMed ID: 23097684 [TBL] [Abstract][Full Text] [Related]
24. Mitosis inhibits DNA double-strand break repair to guard against telomere fusions. Orthwein A; Fradet-Turcotte A; Noordermeer SM; Canny MD; Brun CM; Strecker J; Escribano-Diaz C; Durocher D Science; 2014 Apr; 344(6180):189-93. PubMed ID: 24652939 [TBL] [Abstract][Full Text] [Related]
25. Dephosphorylation of γ-H2AX by WIP1: an important homeostatic regulatory event in DNA repair and cell cycle control. Moon SH; Nguyen TA; Darlington Y; Lu X; Donehower LA Cell Cycle; 2010 Jun; 9(11):2092-6. PubMed ID: 20495376 [TBL] [Abstract][Full Text] [Related]
26. Discordance between phosphorylation and recruitment of 53BP1 in response to DNA double-strand breaks. Harding SM; Bristow RG Cell Cycle; 2012 Apr; 11(7):1432-44. PubMed ID: 22421153 [TBL] [Abstract][Full Text] [Related]
27. The complexity of phosphorylated H2AX foci formation and DNA repair assembly at DNA double-strand breaks. Nakamura AJ; Rao VA; Pommier Y; Bonner WM Cell Cycle; 2010 Jan; 9(2):389-97. PubMed ID: 20046100 [TBL] [Abstract][Full Text] [Related]
29. DNA-PKcs plays a dominant role in the regulation of H2AX phosphorylation in response to DNA damage and cell cycle progression. An J; Huang YC; Xu QZ; Zhou LJ; Shang ZF; Huang B; Wang Y; Liu XD; Wu DC; Zhou PK BMC Mol Biol; 2010 Mar; 11():18. PubMed ID: 20205745 [TBL] [Abstract][Full Text] [Related]
30. Functional interaction of H2AX, NBS1, and p53 in ATM-dependent DNA damage responses and tumor suppression. Kang J; Ferguson D; Song H; Bassing C; Eckersdorff M; Alt FW; Xu Y Mol Cell Biol; 2005 Jan; 25(2):661-70. PubMed ID: 15632067 [TBL] [Abstract][Full Text] [Related]
31. MMSET regulates histone H4K20 methylation and 53BP1 accumulation at DNA damage sites. Pei H; Zhang L; Luo K; Qin Y; Chesi M; Fei F; Bergsagel PL; Wang L; You Z; Lou Z Nature; 2011 Feb; 470(7332):124-8. PubMed ID: 21293379 [TBL] [Abstract][Full Text] [Related]
32. The direct interaction between 53BP1 and MDC1 is required for the recruitment of 53BP1 to sites of damage. Eliezer Y; Argaman L; Rhie A; Doherty AJ; Goldberg M J Biol Chem; 2009 Jan; 284(1):426-435. PubMed ID: 18986980 [TBL] [Abstract][Full Text] [Related]
33. Localization of Double-Strand Break Repair Proteins to Viral Replication Compartments following Lytic Reactivation of Kaposi's Sarcoma-Associated Herpesvirus. Hollingworth R; Horniblow RD; Forrest C; Stewart GS; Grand RJ J Virol; 2017 Nov; 91(22):. PubMed ID: 28855246 [TBL] [Abstract][Full Text] [Related]
34. 53BP1 promotes ATM activity through direct interactions with the MRN complex. Lee JH; Goodarzi AA; Jeggo PA; Paull TT EMBO J; 2010 Feb; 29(3):574-85. PubMed ID: 20010693 [TBL] [Abstract][Full Text] [Related]
35. Nucleotide excision repair-dependent DNA double-strand break formation and ATM signaling activation in mammalian quiescent cells. Wakasugi M; Sasaki T; Matsumoto M; Nagaoka M; Inoue K; Inobe M; Horibata K; Tanaka K; Matsunaga T J Biol Chem; 2014 Oct; 289(41):28730-7. PubMed ID: 25164823 [TBL] [Abstract][Full Text] [Related]
36. REV7 counteracts DNA double-strand break resection and affects PARP inhibition. Xu G; Chapman JR; Brandsma I; Yuan J; Mistrik M; Bouwman P; Bartkova J; Gogola E; Warmerdam D; Barazas M; Jaspers JE; Watanabe K; Pieterse M; Kersbergen A; Sol W; Celie PHN; Schouten PC; van den Broek B; Salman A; Nieuwland M; de Rink I; de Ronde J; Jalink K; Boulton SJ; Chen J; van Gent DC; Bartek J; Jonkers J; Borst P; Rottenberg S Nature; 2015 May; 521(7553):541-544. PubMed ID: 25799992 [TBL] [Abstract][Full Text] [Related]
37. Formation of dynamic gamma-H2AX domains along broken DNA strands is distinctly regulated by ATM and MDC1 and dependent upon H2AX densities in chromatin. Savic V; Yin B; Maas NL; Bredemeyer AL; Carpenter AC; Helmink BA; Yang-Iott KS; Sleckman BP; Bassing CH Mol Cell; 2009 May; 34(3):298-310. PubMed ID: 19450528 [TBL] [Abstract][Full Text] [Related]
38. Growth of persistent foci of DNA damage checkpoint factors is essential for amplification of G1 checkpoint signaling. Yamauchi M; Oka Y; Yamamoto M; Niimura K; Uchida M; Kodama S; Watanabe M; Sekine I; Yamashita S; Suzuki K DNA Repair (Amst); 2008 Mar; 7(3):405-17. PubMed ID: 18248856 [TBL] [Abstract][Full Text] [Related]
39. Ataxin-3 consolidates the MDC1-dependent DNA double-strand break response by counteracting the SUMO-targeted ubiquitin ligase RNF4. Pfeiffer A; Luijsterburg MS; Acs K; Wiegant WW; Helfricht A; Herzog LK; Minoia M; Böttcher C; Salomons FA; van Attikum H; Dantuma NP EMBO J; 2017 Apr; 36(8):1066-1083. PubMed ID: 28275011 [TBL] [Abstract][Full Text] [Related]
40. Autophosphorylation at serine 1981 stabilizes ATM at DNA damage sites. So S; Davis AJ; Chen DJ J Cell Biol; 2009 Dec; 187(7):977-90. PubMed ID: 20026654 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]