These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 20660646)

  • 1. Retrogenes reveal the direction of sex-chromosome evolution in mosquitoes.
    Toups MA; Hahn MW
    Genetics; 2010 Oct; 186(2):763-6. PubMed ID: 20660646
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Complete Dosage Compensation in Anopheles stephensi and the Evolution of Sex-Biased Genes in Mosquitoes.
    Jiang X; Biedler JK; Qi Y; Hall AB; Tu Z
    Genome Biol Evol; 2015 Jun; 7(7):1914-24. PubMed ID: 26078263
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genomic composition and evolution of Aedes aegypti chromosomes revealed by the analysis of physically mapped supercontigs.
    Timoshevskiy VA; Kinney NA; deBruyn BS; Mao C; Tu Z; Severson DW; Sharakhov IV; Sharakhova MV
    BMC Biol; 2014 Apr; 12():27. PubMed ID: 24731704
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Insights into the preservation of the homomorphic sex-determining chromosome of Aedes aegypti from the discovery of a male-biased gene tightly linked to the M-locus.
    Hall AB; Timoshevskiy VA; Sharakhova MV; Jiang X; Basu S; Anderson MA; Hu W; Sharakhov IV; Adelman ZN; Tu Z
    Genome Biol Evol; 2014 Jan; 6(1):179-91. PubMed ID: 24398378
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Retrogene Duplication and Expression Patterns Shaped by the Evolution of Sex Chromosomes in Malaria Mosquitoes.
    Miller D; Chen J; Liang J; Betrán E; Long M; Sharakhov IV
    Genes (Basel); 2022 May; 13(6):. PubMed ID: 35741730
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of testis-specific gene expression in sex-chromosome evolution of Anopheles gambiae.
    Baker DA; Russell S
    Genetics; 2011 Nov; 189(3):1117-20. PubMed ID: 21890740
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Extensive Genetic Differentiation between Homomorphic Sex Chromosomes in the Mosquito Vector, Aedes aegypti.
    Fontaine A; Filipovic I; Fansiri T; Hoffmann AA; Cheng C; Kirkpatrick M; Rašic G; Lambrechts L
    Genome Biol Evol; 2017 Sep; 9(9):2322-2335. PubMed ID: 28945882
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mosquito genomes: structure, organization, and evolution.
    Rai KS; Black WC
    Adv Genet; 1999; 41():1-33. PubMed ID: 10494615
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genomic organization and splicing evolution of the doublesex gene, a Drosophila regulator of sexual differentiation, in the dengue and yellow fever mosquito Aedes aegypti.
    Salvemini M; Mauro U; Lombardo F; Milano A; Zazzaro V; Arcà B; Polito LC; Saccone G
    BMC Evol Biol; 2011 Feb; 11():41. PubMed ID: 21310052
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nanos (nos) genes of the vector mosquitoes, Anopheles gambiae, Anopheles stephensi and Aedes aegypti.
    Calvo E; Walter M; Adelman ZN; Jimenez A; Onal S; Marinotti O; James AA
    Insect Biochem Mol Biol; 2005 Jul; 35(7):789-98. PubMed ID: 15894194
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Karyotype of Brazilian Anopheles albitarsis sensu lato (Diptera:Culicidae).
    Rafael MS; dos Santos-Junior IP; Tadei WP; Sallum MA; Forattini OP
    Genet Mol Res; 2005 Dec; 4(4):684-90. PubMed ID: 16475113
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparative genome analysis of the yellow fever mosquito Aedes aegypti with Drosophila melanogaster and the malaria vector mosquito Anopheles gambiae.
    Severson DW; DeBruyn B; Lovin DD; Brown SE; Knudson DL; Morlais I
    J Hered; 2004; 95(2):103-13. PubMed ID: 15073225
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The sex locus is tightly linked to factors conferring sex-specific lethal effects in the mosquito Aedes aegypti.
    Krzywinska E; Kokoza V; Morris M; de la Casa-Esperon E; Raikhel AS; Krzywinski J
    Heredity (Edinb); 2016 Dec; 117(6):408-416. PubMed ID: 27485667
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mosquito vitellogenin genes: Comparative sequence analysis, gene duplication, and the role of rare synonymous codon usage in regulating expression.
    Isoe J; Hagedorn HH
    J Insect Sci; 2007; 7():1-49. PubMed ID: 20337554
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genomic and evolutionary analyses of Tango transposons in Aedes aegypti, Anopheles gambiae and other mosquito species.
    Coy MR; Tu Z
    Insect Mol Biol; 2007 Aug; 16(4):411-21. PubMed ID: 17506852
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The bursicon gene in mosquitoes: an unusual example of mRNA trans-splicing.
    Robertson HM; Navik JA; Walden KK; Honegger HW
    Genetics; 2007 Jun; 176(2):1351-3. PubMed ID: 17435221
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Organization of a cloned repetitive DNA fragment in mosquito genomes (Diptera: Culicidae).
    Kumar A; Rai KS
    Genome; 1991 Dec; 34(6):998-1006. PubMed ID: 1685722
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sex chromosomes evolved from independent ancestral linkage groups in winged insects.
    Pease JB; Hahn MW
    Mol Biol Evol; 2012 Jun; 29(6):1645-53. PubMed ID: 22319158
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sex chromosome evolution from a heteromorphic to a homomorphic system by inter-population hybridization in a frog.
    Ogata M; Suzuki K; Yuasa Y; Miura I
    Philos Trans R Soc Lond B Biol Sci; 2021 Sep; 376(1833):20200105. PubMed ID: 34304590
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The origin and differentiation of the heteromorphic sex chromosomes Z, W, X, and Y in the frog Rana rugosa, inferred from the sequences of a sex-linked gene, ADP/ATP translocase.
    Miura I; Ohtani H; Nakamura M; Ichikawa Y; Saitoh K
    Mol Biol Evol; 1998 Dec; 15(12):1612-9. PubMed ID: 9866197
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.