BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

346 related articles for article (PubMed ID: 20660779)

  • 1. Native-sized recombinant spider silk protein produced in metabolically engineered Escherichia coli results in a strong fiber.
    Xia XX; Qian ZG; Ki CS; Park YH; Kaplan DL; Lee SY
    Proc Natl Acad Sci U S A; 2010 Aug; 107(32):14059-63. PubMed ID: 20660779
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Large scale production of synthetic spider silk proteins in Escherichia coli.
    Bhattacharyya G; Oliveira P; Krishnaji ST; Chen D; Hinman M; Bell B; Harris TI; Ghazitabatabaei A; Lewis RV; Jones JA
    Protein Expr Purif; 2021 Jul; 183():105839. PubMed ID: 33746079
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A protocol for the production of recombinant spider silk-like proteins for artificial fiber spinning.
    Teulé F; Cooper AR; Furin WA; Bittencourt D; Rech EL; Brooks A; Lewis RV
    Nat Protoc; 2009; 4(3):341-55. PubMed ID: 19229199
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spider silk fibers spun from soluble recombinant silk produced in mammalian cells.
    Lazaris A; Arcidiacono S; Huang Y; Zhou JF; Duguay F; Chretien N; Welsh EA; Soares JW; Karatzas CN
    Science; 2002 Jan; 295(5554):472-6. PubMed ID: 11799236
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inducing β-sheets formation in synthetic spider silk fibers by aqueous post-spin stretching.
    An B; Hinman MB; Holland GP; Yarger JL; Lewis RV
    Biomacromolecules; 2011 Jun; 12(6):2375-81. PubMed ID: 21574576
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Recombinant Production, Characterization, and Fiber Spinning of an Engineered Short Major Ampullate Spidroin (MaSp1s).
    Thamm C; Scheibel T
    Biomacromolecules; 2017 Apr; 18(4):1365-1372. PubMed ID: 28233980
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nephila clavipes Flagelliform silk-like GGX motifs contribute to extensibility and spacer motifs contribute to strength in synthetic spider silk fibers.
    Adrianos SL; Teulé F; Hinman MB; Jones JA; Weber WS; Yarger JL; Lewis RV
    Biomacromolecules; 2013 Jun; 14(6):1751-60. PubMed ID: 23646825
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Purification and characterization of recombinant spider silk expressed in Escherichia coli.
    Arcidiacono S; Mello C; Kaplan D; Cheley S; Bayley H
    Appl Microbiol Biotechnol; 1998 Jan; 49(1):31-8. PubMed ID: 9487707
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Conserved C-terminal domain of spider tubuliform spidroin 1 contributes to extensibility in synthetic fibers.
    Gnesa E; Hsia Y; Yarger JL; Weber W; Lin-Cereghino J; Lin-Cereghino G; Tang S; Agari K; Vierra C
    Biomacromolecules; 2012 Feb; 13(2):304-12. PubMed ID: 22176138
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Forcibly spun dragline silk fibers from web-building spider Trichonephila clavata ensure robustness irrespective of spinning speed and humidity.
    Yazawa K; Sasaki U
    Int J Biol Macromol; 2021 Jan; 168():550-557. PubMed ID: 33333091
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Silkworms transformed with chimeric silkworm/spider silk genes spin composite silk fibers with improved mechanical properties.
    Teulé F; Miao YG; Sohn BH; Kim YS; Hull JJ; Fraser MJ; Lewis RV; Jarvis DL
    Proc Natl Acad Sci U S A; 2012 Jan; 109(3):923-8. PubMed ID: 22215590
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Construction, cloning, and expression of synthetic genes encoding spider dragline silk.
    Prince JT; McGrath KP; DiGirolamo CM; Kaplan DL
    Biochemistry; 1995 Aug; 34(34):10879-85. PubMed ID: 7662669
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of pH on the structure of the recombinant C-terminal domain of Nephila clavipes dragline silk protein.
    Gauthier M; Leclerc J; Lefèvre T; Gagné SM; Auger M
    Biomacromolecules; 2014 Dec; 15(12):4447-54. PubMed ID: 25337802
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Production of spider silk proteins in tobacco and potato.
    Scheller J; Gührs KH; Grosse F; Conrad U
    Nat Biotechnol; 2001 Jun; 19(6):573-7. PubMed ID: 11385464
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fiber formation of a synthetic spider peptide derived from Nephila clavata.
    Hidaka Y; Kontani K; Taniguchi R; Saiki M; Yokoi S; Yukuhiro K; Yamaguchi H; Miyazawa M
    Biopolymers; 2011; 96(2):222-7. PubMed ID: 20564008
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Functionalization and Reinforcement of Recombinant Spider Dragline Silk Fibers by Confined Nanoparticle Formation.
    Cheng J; Hu CF; Gan CY; Xia XX; Qian ZG
    ACS Biomater Sci Eng; 2022 Aug; 8(8):3299-3309. PubMed ID: 35820196
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microbial production of amino acid-modified spider dragline silk protein with intensively improved mechanical properties.
    Zhang H; Zhou F; Jiang X; Cao M; Wang S; Zou H; Cao Y; Xian M; Liu H
    Prep Biochem Biotechnol; 2016 Aug; 46(6):552-8. PubMed ID: 26460683
    [TBL] [Abstract][Full Text] [Related]  

  • 18. RGD-functionalized bioengineered spider dragline silk biomaterial.
    Bini E; Foo CW; Huang J; Karageorgiou V; Kitchel B; Kaplan DL
    Biomacromolecules; 2006 Nov; 7(11):3139-45. PubMed ID: 17096543
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Unveiling the Dynamic Self-Assembly of a Recombinant Dragline-Silk-Mimicking Protein.
    Wu D; Koscic A; Schneider S; Dubini RCA; Rodriguez Camargo DC; Schneider S; Rovó P
    Biomacromolecules; 2024 Mar; 25(3):1759-1774. PubMed ID: 38343096
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A proposed model for dragline spider silk self-assembly: insights from the effect of the repetitive domain size on fiber properties.
    Ittah S; Barak N; Gat U
    Biopolymers; 2010 May; 93(5):458-68. PubMed ID: 20014164
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.