BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 20661222)

  • 1. MCPH1/BRIT1 limits ionizing radiation-induced centrosome amplification.
    Brown JA; Bourke E; Liptrot C; Dockery P; Morrison CG
    Oncogene; 2010 Oct; 29(40):5537-44. PubMed ID: 20661222
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Distinct BRCT domains in Mcph1/Brit1 mediate ionizing radiation-induced focus formation and centrosomal localization.
    Jeffers LJ; Coull BJ; Stack SJ; Morrison CG
    Oncogene; 2008 Jan; 27(1):139-44. PubMed ID: 17599047
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Opposing effects of pericentrin and microcephalin on the pericentriolar material regulate CHK1 activation in the DNA damage response.
    Antonczak AK; Mullee LI; Wang Y; Comartin D; Inoue T; Pelletier L; Morrison CG
    Oncogene; 2016 Apr; 35(15):2003-10. PubMed ID: 26165835
    [TBL] [Abstract][Full Text] [Related]  

  • 4. BRIT1/MCPH1 is a DNA damage responsive protein that regulates the Brca1-Chk1 pathway, implicating checkpoint dysfunction in microcephaly.
    Lin SY; Rai R; Li K; Xu ZX; Elledge SJ
    Proc Natl Acad Sci U S A; 2005 Oct; 102(42):15105-9. PubMed ID: 16217032
    [TBL] [Abstract][Full Text] [Related]  

  • 5. DNA damage induces Chk1-dependent threonine-160 phosphorylation and activation of Cdk2.
    Bourke E; Brown JA; Takeda S; Hochegger H; Morrison CG
    Oncogene; 2010 Jan; 29(4):616-24. PubMed ID: 19838212
    [TBL] [Abstract][Full Text] [Related]  

  • 6. BRIT1/MCPH1 expression in chronic myeloid leukemia and its regulation of the G2/M checkpoint.
    Giallongo C; Tibullo D; La Cava P; Branca A; Parrinello N; Spina P; Stagno F; Conticello C; Chiarenza A; Vigneri P; Palumbo GA; Di Raimondo F
    Acta Haematol; 2011; 126(4):205-10. PubMed ID: 21934293
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Centriole separation in DNA damage-induced centrosome amplification.
    Saladino C; Bourke E; Conroy PC; Morrison CG
    Environ Mol Mutagen; 2009 Oct; 50(8):725-32. PubMed ID: 19274769
    [TBL] [Abstract][Full Text] [Related]  

  • 8. DNA damage response in microcephaly development of MCPH1 mouse model.
    Zhou ZW; Tapias A; Bruhn C; Gruber R; Sukchev M; Wang ZQ
    DNA Repair (Amst); 2013 Aug; 12(8):645-55. PubMed ID: 23683352
    [TBL] [Abstract][Full Text] [Related]  

  • 9. DNA damage induces Chk1-dependent centrosome amplification.
    Bourke E; Dodson H; Merdes A; Cuffe L; Zachos G; Walker M; Gillespie D; Morrison CG
    EMBO Rep; 2007 Jun; 8(6):603-9. PubMed ID: 17468739
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microcephalin is a DNA damage response protein involved in regulation of CHK1 and BRCA1.
    Xu X; Lee J; Stern DF
    J Biol Chem; 2004 Aug; 279(33):34091-4. PubMed ID: 15220350
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Collaborative roles of gammaH2AX and the Rad51 paralog Xrcc3 in homologous recombinational repair.
    Sonoda E; Zhao GY; Kohzaki M; Dhar PK; Kikuchi K; Redon C; Pilch DR; Bonner WM; Nakano A; Watanabe M; Nakayama T; Takeda S; Takami Y
    DNA Repair (Amst); 2007 Mar; 6(3):280-92. PubMed ID: 17123873
    [TBL] [Abstract][Full Text] [Related]  

  • 12. DNA repair after irradiation in glioma cells and normal human astrocytes.
    Short SC; Martindale C; Bourne S; Brand G; Woodcock M; Johnston P
    Neuro Oncol; 2007 Oct; 9(4):404-11. PubMed ID: 17704360
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A possible role for centrosome overduplication in radiation-induced cell death.
    Sato N; Mizumoto K; Nakamura M; Ueno H; Minamishima YA; Farber JL; Tanaka M
    Oncogene; 2000 Nov; 19(46):5281-90. PubMed ID: 11077445
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microcephalin guards against small brains, genetic instability, and cancer.
    Bartek J
    Cancer Cell; 2006 Aug; 10(2):91-3. PubMed ID: 16904606
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Cell cycle regulation after exposure to ionizing radiation].
    Teyssier F; Bay JO; Dionet C; Verrelle P
    Bull Cancer; 1999 Apr; 86(4):345-57. PubMed ID: 10341340
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Explaining differences in sensitivity to killing by ionizing radiation between human lymphoid cell lines.
    Aldridge DR; Radford IR
    Cancer Res; 1998 Jul; 58(13):2817-24. PubMed ID: 9661896
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Radiation-induced DNA repair foci: spatio-temporal aspects of formation, application for assessment of radiosensitivity and biological dosimetry.
    Belyaev IY
    Mutat Res; 2010; 704(1-3):132-41. PubMed ID: 20096808
    [TBL] [Abstract][Full Text] [Related]  

  • 18. HIV-1 Tat depresses DNA-PK(CS) expression and DNA repair, and sensitizes cells to ionizing radiation.
    Sun Y; Huang YC; Xu QZ; Wang HP; Bai B; Sui JL; Zhou PK
    Int J Radiat Oncol Biol Phys; 2006 Jul; 65(3):842-50. PubMed ID: 16751065
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Expression of cyclins A, E and topoisomerase II alpha correlates with centrosome amplification and genomic instability and influences the reliability of cytometric S-phase determination.
    Kronenwett U; Castro J; Roblick UJ; Fujioka K; Ostring C; Faridmoghaddam F; Laytragoon-Lewin N; Tribukait B; Auer G
    BMC Cell Biol; 2003 Jul; 4():8. PubMed ID: 12875657
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Targeted and nontargeted effects of ionizing radiation that impact genomic instability.
    Maxwell CA; Fleisch MC; Costes SV; Erickson AC; Boissière A; Gupta R; Ravani SA; Parvin B; Barcellos-Hoff MH
    Cancer Res; 2008 Oct; 68(20):8304-11. PubMed ID: 18922902
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.