BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 20661722)

  • 1. Effect of PEGylation on stability of peptide in poly(lactide-co-glycolide) microspheres.
    Park EJ; Tak TH; Na DH; Lee KC
    Arch Pharm Res; 2010 Jul; 33(7):1111-6. PubMed ID: 20661722
    [TBL] [Abstract][Full Text] [Related]  

  • 2. PEGylation of octreotide: I. Separation of positional isomers and stability against acylation by poly(D,L-lactide-co-glycolide).
    Na DH; DeLuca PP
    Pharm Res; 2005 May; 22(5):736-42. PubMed ID: 15906168
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In vitro release study of mono-PEGylated growth hormone-releasing peptide-6 from PLGA microspheres.
    Park EJ; Na DH; Lee KC
    Int J Pharm; 2007 Oct; 343(1-2):281-3. PubMed ID: 17644286
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Formation of acylated growth hormone-releasing peptide-6 by poly(lactide-co-glycolide) and its biological activity.
    Na DH; Lee JE; Jang SW; Lee KC
    AAPS PharmSciTech; 2007 Jun; 8(2):Article 43. PubMed ID: 17622118
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of water on exenatide acylation in poly(lactide-co-glycolide) microspheres.
    Liang R; Li X; Shi Y; Wang A; Sun K; Liu W; Li Y
    Int J Pharm; 2013 Sep; 454(1):344-53. PubMed ID: 23872225
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Preparation and stability of poly(ethylene glycol) (PEG)ylated octreotide for application to microsphere delivery.
    Na DH; Murty SB; Lee KC; Thanoo BC; DeLuca PP
    AAPS PharmSciTech; 2003 Dec; 4(4):E72. PubMed ID: 15198567
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthesis of Mono-PEGylated Growth Hormone Releasing Peptide-2 and Investigation of its Biological Activity.
    Hu X; Xu B; Zhou Z
    AAPS PharmSciTech; 2015 Oct; 16(5):1213-9. PubMed ID: 25761386
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In vivo validation of biological responses of bFGF released from microspheres formulated by blending poly-lactide-co-glycolide and poly(ethylene glycol)-grafted-chitosan in hamster cheek pouch microcirculatory models.
    Falabella CA; Jiang H; Frame MD; Chen W
    J Biomater Sci Polym Ed; 2009; 20(7-8):903-22. PubMed ID: 19454159
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sustained release of bee venom peptide from biodegradable thermosensitive PLGA-PEG-PLGA triblock copolymer-based hydrogels in vitro.
    Qiao M; Chen D; Ma X; Hu H
    Pharmazie; 2006 Mar; 61(3):199-202. PubMed ID: 16599259
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sustained release of PEG-g-chitosan complexed DNA from poly(lactide-co-glycolide).
    Yun YH; Jiang H; Chan R; Chen W
    J Biomater Sci Polym Ed; 2005; 16(11):1359-78. PubMed ID: 16372401
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The influence of covalently linked and free polyethylene glycol on the structural and release properties of rhBMP-2 loaded microspheres.
    Lochmann A; Nitzsche H; von Einem S; Schwarz E; Mäder K
    J Control Release; 2010 Oct; 147(1):92-100. PubMed ID: 20603166
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Protein-loaded PLGA-PEG-PLGA microspheres: a tool for cell therapy.
    Tran VT; Karam JP; Garric X; Coudane J; Benoît JP; Montero-Menei CN; Venier-Julienne MC
    Eur J Pharm Sci; 2012 Jan; 45(1-2):128-37. PubMed ID: 22085679
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of PEG in PEG-PLGA microspheres on particle properties and protein release.
    Buske J; König C; Bassarab S; Lamprecht A; Mühlau S; Wagner KG
    Eur J Pharm Biopharm; 2012 May; 81(1):57-63. PubMed ID: 22306701
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of chemically modified peptide from poly(D,L-lactide-co-glycolide) microspheres under in vitro release conditions.
    Murty SB; Goodman J; Thanoo BC; DeLuca PP
    AAPS PharmSciTech; 2003 Oct; 4(4):E50. PubMed ID: 15198545
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microencapsulation of ovalbumin in poly(lactide-co-glycolide) by an oil-in-oil (o/o) solvent evaporation method.
    Uchida T; Yagi A; Oda Y; Goto S
    J Microencapsul; 1996; 13(5):509-18. PubMed ID: 8864988
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Preparation and characterization of biodegradable nanoparticles entrapping immunodominant peptide conjugated with PEG for oral tolerance induction.
    Lee WK; Park JY; Jung S; Yang CW; Kim WU; Kim HY; Park JH; Park JS
    J Control Release; 2005 Jun; 105(1-2):77-88. PubMed ID: 15919128
    [TBL] [Abstract][Full Text] [Related]  

  • 17. PEGylation of octreotide: II. Effect of N-terminal mono-PEGylation on biological activity and pharmacokinetics.
    Na DH; Lee KC; DeLuca PP
    Pharm Res; 2005 May; 22(5):743-9. PubMed ID: 15906169
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stabilization of a model formalinized protein antigen encapsulated in poly(lactide-co-glycolide)-based microspheres.
    Jiang W; Schwendeman SP
    J Pharm Sci; 2001 Oct; 90(10):1558-69. PubMed ID: 11745714
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Direct determination of the peptide content in microspheres by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry.
    Na DH; DeLuca PP; Lee KC
    Anal Chem; 2004 May; 76(9):2669-73. PubMed ID: 15117214
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Impurity formation studies with peptide-loaded polymeric microspheres Part II. In vitro evaluation.
    Murty SB; Na DH; Thanoo BC; DeLuca PP
    Int J Pharm; 2005 Jun; 297(1-2):62-72. PubMed ID: 15885939
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.