These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
121 related articles for article (PubMed ID: 20661782)
1. The relationships between sulphate reduction and COD/VFA utilisation using grass cellulose as carbon and energy sources. Mulopo J; Greben H; Sigama J; Radebe V; Mashego M; Burke L Appl Biochem Biotechnol; 2011 Feb; 163(3):393-403. PubMed ID: 20661782 [TBL] [Abstract][Full Text] [Related]
2. Effect of the addition of zero valent iron (Fe(0)) on the batch biological sulphate reduction using grass cellulose as carbon source. Mulopo J; Schaefer L Appl Biochem Biotechnol; 2013 Dec; 171(8):2020-9. PubMed ID: 24018847 [TBL] [Abstract][Full Text] [Related]
3. Upflow anaerobic sludge blanket reactor--a review. Bal AS; Dhagat NN Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675 [TBL] [Abstract][Full Text] [Related]
4. The effects of change in volatile fatty acid (VFA) composition on methanogenic upflow filter reactor (UFAF) performance. Demirel B; Yenigün O Environ Technol; 2002 Oct; 23(10):1179-87. PubMed ID: 12465844 [TBL] [Abstract][Full Text] [Related]
5. Enhancement of Volatile Fatty Acids Production from Food Waste by Mature Compost Addition. Cheah YK; Dosta J; Mata-Álvarez J Molecules; 2019 Aug; 24(16):. PubMed ID: 31426488 [TBL] [Abstract][Full Text] [Related]
6. The effect of organic loading rate on VFA/COD ratio for methane production from an EGSB reactor. Wei B; Yuan L; Liu W J Environ Biol; 2015 Jul; 36(4):1025-30. PubMed ID: 26364485 [TBL] [Abstract][Full Text] [Related]
7. Use of Acetate, Propionate, and Butyrate for Reduction of Nitrate and Sulfate and Methanogenesis in Microcosms and Bioreactors Simulating an Oil Reservoir. Chen C; Shen Y; An D; Voordouw G Appl Environ Microbiol; 2017 Apr; 83(7):. PubMed ID: 28130297 [TBL] [Abstract][Full Text] [Related]
8. Effect of pentachlorophenol and chemical oxygen demand mass concentrations in influent on operational behaviors of upflow anaerobic sludge blanket (UASB) reactor. Shen DS; He R; Liu XW; Long Y J Hazard Mater; 2006 Aug; 136(3):645-53. PubMed ID: 16513261 [TBL] [Abstract][Full Text] [Related]
9. [Performance of early-warning of compartmentalized anaerobic reactor]. Ji J; Zheng P; Zhang J; Lu H Sheng Wu Gong Cheng Xue Bao; 2011 Sep; 27(9):1347-54. PubMed ID: 22117518 [TBL] [Abstract][Full Text] [Related]
10. Effect of COD/SO4(2-) ratio on anaerobic treatment of landfill leachate during the start-up period. Yilmaz T; Erdirencelebi D; Berktay A Environ Technol; 2012; 33(1-3):313-20. PubMed ID: 22519117 [TBL] [Abstract][Full Text] [Related]
11. [Phase separation characteristics of an anaerobic baffled reactor treating organic wastewater containing sulphate]. Jiang YR; Hu MC; Li XJ; Nong YN; Deng XM; Rong CJ; Zhou RM; Wei TY Huan Jing Ke Xue; 2010 Jul; 31(7):1544-53. PubMed ID: 20825024 [TBL] [Abstract][Full Text] [Related]
12. Evaluation of the methanogenic step of a two-stage anaerobic digestion process of acidified olive mill solid residue from a previous hydrolytic-acidogenic step. Rincón B; Borja R; Martín MA; Martín A Waste Manag; 2009 Sep; 29(9):2566-73. PubMed ID: 19450962 [TBL] [Abstract][Full Text] [Related]
13. The effect of pH control and 'hydraulic flush' on hydrolysis and Volatile Fatty Acids (VFA) production and profile in anaerobic leach bed reactors digesting a high solids content substrate. Cysneiros D; Banks CJ; Heaven S; Karatzas KA Bioresour Technol; 2012 Nov; 123():263-71. PubMed ID: 22940328 [TBL] [Abstract][Full Text] [Related]
14. Tannery effluent as a carbon source for biological sulphate reduction. Boshoff G; Duncan J; Rose PD Water Res; 2004 Jun; 38(11):2651-8. PubMed ID: 15207595 [TBL] [Abstract][Full Text] [Related]
15. The effect of adapting cellulose degrading microorganisms to 25 degrees C providing energy sources for biological sulphate removal. Greben H; Sigama J Water Sci Technol; 2009; 60(7):1711-9. PubMed ID: 19809134 [TBL] [Abstract][Full Text] [Related]
16. Implications of volatile fatty acid profile on the metabolic pathway during continuous sulfate reduction. Bertolino SM; Rodrigues IC; Guerra-Sá R; Aquino SF; Leão VA J Environ Manage; 2012 Jul; 103():15-23. PubMed ID: 22459067 [TBL] [Abstract][Full Text] [Related]
17. Effect of polyvinyl alcohol hydrogel as a biocarrier on volatile fatty acids production of a two-stage thermophilic anaerobic membrane bioreactor. Chaikasem S; Abeynayaka A; Visvanathan C Bioresour Technol; 2014 Sep; 168():100-5. PubMed ID: 24803272 [TBL] [Abstract][Full Text] [Related]
18. Performance of a down-flow fluidized bed reactor under sulfate reduction conditions using volatile fatty acids as electron donors. Celis-García LB; Razo-Flores E; Monroy O Biotechnol Bioeng; 2007 Jul; 97(4):771-9. PubMed ID: 17154309 [TBL] [Abstract][Full Text] [Related]
19. Prevention of volatile fatty acids production and limitation of odours from winery wastewaters by denitrification. Bories A; Guillot JM; Sire Y; Couderc M; Lemaire SA; Kreim V; Roux JC Water Res; 2007 Jul; 41(13):2987-95. PubMed ID: 17467770 [TBL] [Abstract][Full Text] [Related]
20. Biohydrogen production from chemical wastewater treatment in biofilm configured reactor operated in periodic discontinuous batch mode by selectively enriched anaerobic mixed consortia. Venkata Mohan S; Vijaya Bhaskar Y; Sarma PN Water Res; 2007 Jun; 41(12):2652-64. PubMed ID: 17418367 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]