These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 20661975)

  • 1. Synthesis of cyclic imides from simple diols.
    Zhang J; Senthilkumar M; Ghosh SC; Hong SH
    Angew Chem Int Ed Engl; 2010 Aug; 49(36):6391-5. PubMed ID: 20661975
    [No Abstract]   [Full Text] [Related]  

  • 2. Copper-catalyzed oxidation of arene-fused cyclic amines to cyclic imides.
    Yan X; Fang K; Liu H; Xi C
    Chem Commun (Camb); 2013 Nov; 49(90):10650-2. PubMed ID: 24100546
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synthesis of cyclic imides from nitriles and diols using hydrogen transfer as a substrate-activating strategy.
    Kim J; Hong SH
    Org Lett; 2014 Sep; 16(17):4404-7. PubMed ID: 25111669
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chemoselective hydrogenation of imides catalyzed by Cp*Ru(PN) complexes and its application to the asymmetric synthesis of paroxetine.
    Ito M; Sakaguchi A; Kobayashi C; Ikariya T
    J Am Chem Soc; 2007 Jan; 129(2):290-1. PubMed ID: 17212405
    [No Abstract]   [Full Text] [Related]  

  • 5. Metal-free synthesis of N-aryloxyimides and aryloxyamines.
    Ghosh R; Olofsson B
    Org Lett; 2014 Mar; 16(6):1830-2. PubMed ID: 24597780
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synthesis of racemic cis-5-hydroxy-3-phthalimidoglutarimide. A metabolite of thalidomide isolated from human plasma.
    Luzzio FA; Duveau DY; Lepper ER; Figg WD
    J Org Chem; 2005 Nov; 70(24):10117-20. PubMed ID: 16292851
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Site-specific introduction of gold-carbenoids by intermolecular oxidation of ynamides or ynol ethers.
    Davies PW; Cremonesi A; Martin N
    Chem Commun (Camb); 2011 Jan; 47(1):379-81. PubMed ID: 20830369
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A new type of self-supported, polymeric Ru-carbene complex for homogeneous catalysis and heterogeneous recovery: synthesis and catalytic activities for ring-closing metathesis.
    Chen SW; Kim JH; Shin H; Lee SG
    Org Biomol Chem; 2008 Aug; 6(15):2676-8. PubMed ID: 18633523
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Asymmetric total synthesis of (-)-indicol by a carbene cyclization-cycloaddition cascade strategy.
    Lam SK; Chiu P
    Chemistry; 2007; 13(34):9589-99. PubMed ID: 17763492
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An ionic liquid-supported ruthenium carbene complex: a robust and recyclable catalyst for ring-closing olefin metathesis in ionic liquids.
    Audic N; Clavier H; Mauduit M; Guillemin JC
    J Am Chem Soc; 2003 Aug; 125(31):9248-9. PubMed ID: 12889926
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Deactivation of ruthenium olefin metathesis catalysts through intramolecular carbene-arene bond formation.
    Vehlow K; Gessler S; Blechert S
    Angew Chem Int Ed Engl; 2007; 46(42):8082-5. PubMed ID: 17854014
    [No Abstract]   [Full Text] [Related]  

  • 12. Catalytic kinetic resolution of cyclic secondary amines.
    Binanzer M; Hsieh SY; Bode JW
    J Am Chem Soc; 2011 Dec; 133(49):19698-701. PubMed ID: 22082205
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Copper-catalyzed synthesis of α-amino imides from tertiary amines: Ugi-type three-component assemblies involving direct functionalization of sp3 C-Hs adjacent to nitrogen atoms.
    Ye X; Xie C; Pan Y; Han L; Xie T
    Org Lett; 2010 Oct; 12(19):4240-3. PubMed ID: 20828188
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthesis of Cyclic Imides (Methylphtalimides, Carboxylic Acid Phtalimides and Itaconimides) and Evaluation of their Antifungal Potential.
    Stiz D; Corrêa R; D'Auria FD; Simonetti G; Cechinel-Filho V
    Med Chem; 2016; 12(7):647-654. PubMed ID: 26924626
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ru-catalyzed stereoselective addition of imides to alkynes.
    Goossen LJ; Blanchot M; Brinkmann C; Goossen K; Karch R; Rivas-Nass A
    J Org Chem; 2006 Dec; 71(25):9506-9. PubMed ID: 17137383
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Solid-phase synthesis of cyclic imides.
    Barn DR; Morphy JR
    J Comb Chem; 1999; 1(2):151-6. PubMed ID: 10746011
    [TBL] [Abstract][Full Text] [Related]  

  • 17. VAPOL phosphoric acid catalysis: the highly enantioselective addition of imides to imines.
    Liang Y; Rowland EB; Rowland GB; Perman JA; Antilla JC
    Chem Commun (Camb); 2007 Nov; (43):4477-9. PubMed ID: 17971961
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ruthenium(II)-catalyzed C-H activation with isocyanates: a versatile route to phthalimides.
    De Sarkar S; Ackermann L
    Chemistry; 2014 Oct; 20(43):13932-6. PubMed ID: 25201510
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cycloheptadiene ring synthesis by tandem intermolecular enyne metathesis.
    Kulkarni AA; Diver ST
    Org Lett; 2003 Sep; 5(19):3463-6. PubMed ID: 12967300
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Versatile and sustainable synthesis of cyclic imides from dicarboxylic acids and amines by Nb2O5 as a base-tolerant heterogeneous Lewis acid catalyst.
    Ali MA; Siddiki SM; Kon K; Hasegawa J; Shimizu K
    Chemistry; 2014 Oct; 20(44):14256-60. PubMed ID: 25225033
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.