BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

278 related articles for article (PubMed ID: 20661990)

  • 1. Cellobiose dehydrogenase: a versatile catalyst for electrochemical applications.
    Ludwig R; Harreither W; Tasca F; Gorton L
    Chemphyschem; 2010 Sep; 11(13):2674-97. PubMed ID: 20661990
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of direct and mediated electron transfer for cellobiose dehydrogenase from Phanerochaete sordida.
    Tasca F; Gorton L; Harreither W; Haltrich D; Ludwig R; Nöll G
    Anal Chem; 2009 Apr; 81(7):2791-8. PubMed ID: 19256522
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cellobiose dehydrogenase: Bioelectrochemical insights and applications.
    Scheiblbrandner S; Ludwig R
    Bioelectrochemistry; 2020 Feb; 131():107345. PubMed ID: 31494387
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Recombinantly produced cellobiose dehydrogenase from Corynascus thermophilus for glucose biosensors and biofuel cells.
    Harreither W; Felice AK; Paukner R; Gorton L; Ludwig R; Sygmund C
    Biotechnol J; 2012 Nov; 7(11):1359-66. PubMed ID: 22815189
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electron transfer chain reaction of the extracellular flavocytochrome cellobiose dehydrogenase from the basidiomycete Phanerochaete chrysosporium.
    Igarashi K; Yoshida M; Matsumura H; Nakamura N; Ohno H; Samejima M; Nishino T
    FEBS J; 2005 Jun; 272(11):2869-77. PubMed ID: 15943818
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrochemical oxidation of water by a cellobiose dehydrogenase from Phanerochaete chrysosporium.
    Feng J; Himmel ME; Decker SR
    Biotechnol Lett; 2005 Apr; 27(8):555-60. PubMed ID: 15973489
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Direct electrochemistry of Phanerochaete chrysosporium cellobiose dehydrogenase covalently attached onto gold nanoparticle modified solid gold electrodes.
    Matsumura H; Ortiz R; Ludwig R; Igarashi K; Samejima M; Gorton L
    Langmuir; 2012 Jul; 28(29):10925-33. PubMed ID: 22746277
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Localized deposition of Au nanoparticles by direct electron transfer through cellobiose dehydrogenase.
    Malel E; Ludwig R; Gorton L; Mandler D
    Chemistry; 2010 Oct; 16(38):11697-706. PubMed ID: 20821760
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Investigation of the mediated electron transfer mechanism of cellobiose dehydrogenase at cytochrome c-modified gold electrodes.
    Sarauli D; Ludwig R; Haltrich D; Gorton L; Lisdat F
    Bioelectrochemistry; 2012 Oct; 87():9-14. PubMed ID: 21849263
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improvement of direct bioelectrocatalysis by cellobiose dehydrogenase on screen printed graphite electrodes using polyaniline modification.
    Trashin SA; Haltrich D; Ludwig R; Gorton L; Karyakin AA
    Bioelectrochemistry; 2009 Sep; 76(1-2):87-92. PubMed ID: 19570729
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Crystal structure of the flavoprotein domain of the extracellular flavocytochrome cellobiose dehydrogenase.
    Hallberg BM; Henriksson G; Pettersson G; Divne C
    J Mol Biol; 2002 Jan; 315(3):421-34. PubMed ID: 11786022
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Alcohol dehydrogenase of acetic acid bacteria: structure, mode of action, and applications in biotechnology.
    Yakushi T; Matsushita K
    Appl Microbiol Biotechnol; 2010 May; 86(5):1257-65. PubMed ID: 20306188
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Membrane-bound dehydrogenases from Gluconobacter sp.: interfacial electrochemistry and direct bioelectrocatalysis.
    Tkac J; Svitel J; Vostiar I; Navratil M; Gemeiner P
    Bioelectrochemistry; 2009 Sep; 76(1-2):53-62. PubMed ID: 19329366
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrochemical investigation of cellobiose dehydrogenase from new fungal sources on Au electrodes.
    Stoica L; Dimcheva N; Haltrich D; Ruzgas T; Gorton L
    Biosens Bioelectron; 2005 Apr; 20(10):2010-8. PubMed ID: 15741070
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bioelectrocatalytic performance of d-fructose dehydrogenase.
    Adachi T; Kaida Y; Kitazumi Y; Shirai O; Kano K
    Bioelectrochemistry; 2019 Oct; 129():1-9. PubMed ID: 31063949
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fructose/dioxygen biofuel cell based on direct electron transfer-type bioelectrocatalysis.
    Kamitaka Y; Tsujimura S; Setoyama N; Kajino T; Kano K
    Phys Chem Chem Phys; 2007 Apr; 9(15):1793-801. PubMed ID: 17415490
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Isolation and characterization of a cellobiose dehydrogenase formed by a asporogenic mycelial fungus INBI 2-26(-)].
    Karapetian KN; Iachkova SN; Vasil'chenko LG; Borzykh MN; Rabinovich ML
    Prikl Biokhim Mikrobiol; 2003; 39(6):642-51. PubMed ID: 14714477
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cellobiose dehydrogenase.
    Csarman F; Wohlschlager L; Ludwig R
    Enzymes; 2020; 47():457-489. PubMed ID: 32951832
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Graphite electrodes modified with Neurospora crassa cellobiose dehydrogenase: comparative electrochemical characterization under direct and mediated electron transfer.
    Kovacs G; Ortiz R; Coman V; Harreither W; Popescu IC; Ludwig R; Gorton L
    Bioelectrochemistry; 2012 Dec; 88():84-91. PubMed ID: 22809780
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pyranose dehydrogenases: Rare enzymes for electrochemistry and biocatalysis.
    Peterbauer CK
    Bioelectrochemistry; 2020 Apr; 132():107399. PubMed ID: 31835110
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.