BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 20662022)

  • 1. Visible light-induced killing of bacteria as a function of wavelength: implication for wound healing.
    Lipovsky A; Nitzan Y; Gedanken A; Lubart R
    Lasers Surg Med; 2010 Aug; 42(6):467-72. PubMed ID: 20662022
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A possible mechanism for visible light-induced wound healing.
    Lipovsky A; Nitzan Y; Lubart R
    Lasers Surg Med; 2008 Sep; 40(7):509-14. PubMed ID: 18727022
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-intensity narrow-spectrum light inactivation and wavelength sensitivity of Staphylococcus aureus.
    Maclean M; MacGregor SJ; Anderson JG; Woolsey G
    FEMS Microbiol Lett; 2008 Aug; 285(2):227-32. PubMed ID: 18557942
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sensitivity of Staphylococcus aureus strains to broadband visible light.
    Lipovsky A; Nitzan Y; Friedmann H; Lubart R
    Photochem Photobiol; 2009; 85(1):255-60. PubMed ID: 18764895
    [TBL] [Abstract][Full Text] [Related]  

  • 5. ROS-mediated killing efficiency with visible light of bacteria carrying different red fluorochrome proteins.
    Waldeck W; Heidenreich E; Mueller G; Wiessler M; Tóth K; Braun K
    J Photochem Photobiol B; 2012 Apr; 109():28-33. PubMed ID: 22296652
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inactivation of bacteria G(+)-S. aureus and G(-)-E. coli by phototoxic polythiophene incorporated in ZSM-5 zeolite.
    Cík G; Priesolová S; Bujdáková H; Sersen F; Potheöová T; Kristín J
    Chemosphere; 2006 Jun; 63(9):1419-26. PubMed ID: 16325229
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of 630-, 660-, 810-, and 905-nm laser irradiation delivering radiant exposure of 1-50 J/cm2 on three species of bacteria in vitro.
    Nussbaum EL; Lilge L; Mazzulli T
    J Clin Laser Med Surg; 2002 Dec; 20(6):325-33. PubMed ID: 12513919
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Elucidation of cell killing mechanism by comparative analysis of photoreactions on different types of bacteria.
    Swetha S; Singh MK; Minchitha KU; Balakrishna RG
    Photochem Photobiol; 2012; 88(2):414-22. PubMed ID: 22145679
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of 810 nm laser irradiation on in vitro growth of bacteria: comparison of continuous wave and frequency modulated light.
    Nussbaum EL; Lilge L; Mazzulli T
    Lasers Surg Med; 2002; 31(5):343-51. PubMed ID: 12430152
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Photocatalytic degradation of pathogenic bacteria with AgI/TiO2 under visible light irradiation.
    Hu C; Guo J; Qu J; Hu X
    Langmuir; 2007 Apr; 23(9):4982-7. PubMed ID: 17373834
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Finding optimal photosensitisers for the decontamination of foods by the photodynamic effect.
    Kreitner M; Wagner KH; Alth G; Ebermann R; Foissy H; Elmadfa I
    Forum Nutr; 2003; 56():367-9. PubMed ID: 15806940
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The role of reactive oxygen species in Staphylococcus aureus photoinactivation by methylene blue.
    Sabbahi S; Alouini Z; Jemli M; Boudabbous A
    Water Sci Technol; 2008; 58(5):1047-54. PubMed ID: 18824803
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The bactericidal effect of ultraviolet and visible light on Escherichia coli.
    Vermeulen N; Keeler WJ; Nandakumar K; Leung KT
    Biotechnol Bioeng; 2008 Feb; 99(3):550-6. PubMed ID: 17680675
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Flavins are source of visible-light-induced free radical formation in cells.
    Eichler M; Lavi R; Shainberg A; Lubart R
    Lasers Surg Med; 2005 Oct; 37(4):314-9. PubMed ID: 16196041
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhanced inactivation of bacteria by metal-oxide nanoparticles combined with visible light irradiation.
    Lipovsky A; Gedanken A; Nitzan Y; Lubart R
    Lasers Surg Med; 2011 Mar; 43(3):236-40. PubMed ID: 21412807
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effective bacterial inactivation using low temperature radio frequency plasma.
    Sureshkumar A; Sankar R; Mandal M; Neogi S
    Int J Pharm; 2010 Aug; 396(1-2):17-22. PubMed ID: 20609423
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ag/AgBr/TiO2 visible light photocatalyst for destruction of azodyes and bacteria.
    Hu C; Lan Y; Qu J; Hu X; Wang A
    J Phys Chem B; 2006 Mar; 110(9):4066-72. PubMed ID: 16509698
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Visible light induced photocatalytic inactivation of bacteria by modified titanium dioxide films on organic polymers.
    Sadowski R; Strus M; Buchalska M; Heczko PB; Macyk W
    Photochem Photobiol Sci; 2015 Mar; 14(3):514-9. PubMed ID: 25254352
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In vitro bactericidal effects of 625, 525, and 425 nm wavelength (red, green, and blue) light-emitting diode irradiation.
    Kim S; Kim J; Lim W; Jeon S; Kim O; Koh JT; Kim CS; Choi H; Kim O
    Photomed Laser Surg; 2013 Nov; 31(11):554-62. PubMed ID: 24138193
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synergistic interaction between wavelength of light and concentration of H₂O₂ in bactericidal activity of photolysis of H₂O₂.
    Toki T; Nakamura K; Kurauchi M; Kanno T; Katsuda Y; Ikai H; Hayashi E; Egusa H; Sasaki K; Niwano Y
    J Biosci Bioeng; 2015 Mar; 119(3):358-62. PubMed ID: 25282638
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.