These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 20662081)

  • 1. A method to calculate the one-electron reduction potentials for nitroaromatic compounds based on gas-phase quantum mechanics.
    Phillips KL; Sandler SI; Chiu PC
    J Comput Chem; 2011 Jan; 32(2):226-39. PubMed ID: 20662081
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reduction rate constants for nitroaromatic compounds estimated from adiabatic electron affinities.
    Phillips KL; Chiu PC; Sandler SI
    Environ Sci Technol; 2010 Oct; 44(19):7431-6. PubMed ID: 20822125
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A simple correlation for predicting heats of fusion of nitroaromatic carbocyclic energetic compounds.
    Keshavarz MH
    J Hazard Mater; 2008 Jan; 150(2):387-93. PubMed ID: 17548148
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A simple procedure for calculating condensed phase heat of formation of nitroaromatic energetic materials.
    Keshavarz MH
    J Hazard Mater; 2006 Aug; 136(3):425-31. PubMed ID: 16478648
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hydrogen Atom Transfer Reaction Free Energy as a Predictor of Abiotic Nitroaromatic Reduction Rate Constants: A Comprehensive Analysis.
    Di Toro DM; Hickey KP; Allen HE; Carbonaro RF; Chiu PC
    Environ Toxicol Chem; 2020 Sep; 39(9):1678-1684. PubMed ID: 32593187
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Accurate calculation of absolute one-electron redox potentials of some para-quinone derivatives in acetonitrile.
    Namazian M; Coote ML
    J Phys Chem A; 2007 Aug; 111(30):7227-32. PubMed ID: 17625811
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Predictions of Gibbs free energies for the adsorption of polyaromatic and nitroaromatic environmental contaminants on carbonaceous materials: efficient computational approach.
    Scott AM; Gorb L; Mobley EA; Hill FC; Leszczynski J
    Langmuir; 2012 Sep; 28(37):13307-17. PubMed ID: 22909085
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Application of quantum chemical approximations to environmental problems: prediction of water solubility for nitro compounds.
    Kholod YA; Muratov EN; Gorb LG; Hill FC; Artemenko AG; Kuz'min VE; Qasim M; Leszczynski J
    Environ Sci Technol; 2009 Dec; 43(24):9208-15. PubMed ID: 20000511
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Predicting reduction rates of energetic nitroaromatic compounds using calculated one-electron reduction potentials.
    Salter-Blanc AJ; Bylaska EJ; Johnston HJ; Tratnyek PG
    Environ Sci Technol; 2015 Mar; 49(6):3778-86. PubMed ID: 25671710
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Theoretical study of ionization and one-electron oxidation potentials of N-heterocyclic compounds.
    Sviatenko LK; Gorb L; Hill FC; Leszczynski J
    J Comput Chem; 2013 May; 34(13):1094-100. PubMed ID: 23335274
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Computation of the free energy change associated with one-electron reduction of coenzyme immersed in water: a novel approach within the framework of the quantum mechanical/molecular mechanical method combined with the theory of energy representation.
    Takahashi H; Ohno H; Kishi R; Nakano M; Matubayasi N
    J Chem Phys; 2008 Nov; 129(20):205103. PubMed ID: 19045881
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Predicting condensed phase heat of formation of nitroaromatic compounds.
    Keshavarz MH
    J Hazard Mater; 2009 Sep; 169(1-3):890-900. PubMed ID: 19501463
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reaction path potential for complex systems derived from combined ab initio quantum mechanical and molecular mechanical calculations.
    Lu Z; Yang W
    J Chem Phys; 2004 Jul; 121(1):89-100. PubMed ID: 15260525
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chemotaxis of a Ralstonia sp. SJ98 toward different nitroaromatic compounds and their degradation.
    Samanta SK; Bhushan B; Chauhan A; Jain RK
    Biochem Biophys Res Commun; 2000 Mar; 269(1):117-23. PubMed ID: 10694487
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Unified Linear Free Energy Relationship for Abiotic Reduction Rate of Nitroaromatics and Hydroquinones Using Quantum Chemically Estimated Energies.
    Hickey KP; Di Toro DM; Allen HE; Carbonaro RF; Chiu PC
    Environ Toxicol Chem; 2020 Dec; 39(12):2389-2395. PubMed ID: 32897583
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A quantum chemical based toxicity study of estimated reduction potential and hydrophobicity in series of nitroaromatic compounds.
    Gooch A; Sizochenko N; Sviatenko L; Gorb L; Leszczynski J
    SAR QSAR Environ Res; 2017 Feb; 28(2):133-150. PubMed ID: 28235392
    [TBL] [Abstract][Full Text] [Related]  

  • 17. New approach for predicting melting point of carbocyclic nitroaromatic compounds.
    Keshavarz MH; Pouretedal HR
    J Hazard Mater; 2007 Sep; 148(3):592-8. PubMed ID: 17434261
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Using molecular structure for reliable predicting enthalpy of melting of nitroaromatic energetic compounds.
    Semnani A; Keshavarz MH
    J Hazard Mater; 2010 Jun; 178(1-3):264-72. PubMed ID: 20117881
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reduction potentials and acidity constants of Mn superoxide dismutase calculated by QM/MM free-energy methods.
    Heimdal J; Kaukonen M; Srnec M; Rulíšek L; Ryde U
    Chemphyschem; 2011 Dec; 12(17):3337-47. PubMed ID: 21960467
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Radiation and quantum chemical studies of chalcone derivatives.
    Gaikwad P; Priyadarsini KI; Naumov S; Rao BS
    J Phys Chem A; 2010 Aug; 114(30):7877-85. PubMed ID: 20617801
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.