These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
216 related articles for article (PubMed ID: 20662250)
21. Human splenic macrophages as a model for in vitro infection with Mycobacterium tuberculosis. Henao J; Sánchez D; Muñoz CH; Mejía N; Arias MA; García LF; Barrera LF Tuberculosis (Edinb); 2007 Nov; 87(6):509-17. PubMed ID: 17765662 [TBL] [Abstract][Full Text] [Related]
22. Mincle is not essential for controlling Mycobacterium tuberculosis infection. Heitmann L; Schoenen H; Ehlers S; Lang R; Hölscher C Immunobiology; 2013 Apr; 218(4):506-16. PubMed ID: 22784441 [TBL] [Abstract][Full Text] [Related]
23. Toll-like receptor 2 in host defense against Mycobacterium tuberculosis: to be or not to be-that is the question. Gopalakrishnan A; Salgame P Curr Opin Immunol; 2016 Oct; 42():76-82. PubMed ID: 27326654 [TBL] [Abstract][Full Text] [Related]
24. Virulent clinical isolates of Mycobacterium tuberculosis grow rapidly and induce cellular necrosis but minimal apoptosis in murine macrophages. Park JS; Tamayo MH; Gonzalez-Juarrero M; Orme IM; Ordway DJ J Leukoc Biol; 2006 Jan; 79(1):80-6. PubMed ID: 16275894 [TBL] [Abstract][Full Text] [Related]
25. A mathematical model for cellular immunology of tuberculosis. Ibarguen-Mondragon E; Esteva L; Chávez-Galán L Math Biosci Eng; 2011 Oct; 8(4):973-86. PubMed ID: 21936595 [TBL] [Abstract][Full Text] [Related]
26. For better or for worse: the immune response against Mycobacterium tuberculosis balances pathology and protection. Dorhoi A; Reece ST; Kaufmann SH Immunol Rev; 2011 Mar; 240(1):235-51. PubMed ID: 21349097 [TBL] [Abstract][Full Text] [Related]
27. Differential induction of apoptosis by virulent Mycobacterium tuberculosis in resistant and susceptible murine macrophages: role of nitric oxide and mycobacterial products. Rojas M; Barrera LF; Puzo G; Garcia LF J Immunol; 1997 Aug; 159(3):1352-61. PubMed ID: 9233632 [TBL] [Abstract][Full Text] [Related]
28. Distinct Strategies Employed by Dendritic Cells and Macrophages in Restricting Mycobacterium tuberculosis Infection: Different Philosophies but Same Desire. Khan N; Vidyarthi A; Pahari S; Agrewala JN Int Rev Immunol; 2016 Sep; 35(5):386-398. PubMed ID: 25793750 [TBL] [Abstract][Full Text] [Related]
29. DM, but not cathepsin L, is required to control an aerosol infection with Mycobacterium tuberculosis. Nepal RM; Vesosky B; Turner J; Bryant P J Leukoc Biol; 2008 Oct; 84(4):1011-8. PubMed ID: 18591414 [TBL] [Abstract][Full Text] [Related]
30. Absence of complement receptor 3 results in reduced binding and ingestion of Mycobacterium tuberculosis but has no significant effect on the induction of reactive oxygen and nitrogen intermediates or on the survival of the bacteria in resident and interferon-gamma activated macrophages. Rooyakkers AW; Stokes RW Microb Pathog; 2005 Sep; 39(3):57-67. PubMed ID: 16084683 [TBL] [Abstract][Full Text] [Related]
31. Role of mycobacteria-induced monocyte/macrophage apoptosis in the pathogenesis of human tuberculosis. Bocchino M; Galati D; Sanduzzi A; Colizzi V; Brunetti E; Mancino G Int J Tuberc Lung Dis; 2005 Apr; 9(4):375-83. PubMed ID: 15830742 [TBL] [Abstract][Full Text] [Related]
32. [Mechanisms of pathogenicity and host defense in infections by intracellular parasitic microbes]. Mitsuyama M; Suzuki K Kekkaku; 2000 Sep; 75(9):557-60. PubMed ID: 11068372 [TBL] [Abstract][Full Text] [Related]
33. Th2-type immune response observed in healthy individuals to sonicate antigen prepared from the most prevalent Mycobacterium tuberculosis strain with single copy of IS6110. Rajavelu P; Das SD FEMS Immunol Med Microbiol; 2005 Jul; 45(1):95-102. PubMed ID: 15985228 [TBL] [Abstract][Full Text] [Related]
34. Immunity in tuberculosis. Chaparas SD Bull World Health Organ; 1982; 60(4):447-62. PubMed ID: 6814775 [TBL] [Abstract][Full Text] [Related]
35. Immunoevasion and immunosuppression of the macrophage by Mycobacterium tuberculosis. Hmama Z; Peña-Díaz S; Joseph S; Av-Gay Y Immunol Rev; 2015 Mar; 264(1):220-32. PubMed ID: 25703562 [TBL] [Abstract][Full Text] [Related]
36. Macrophage takeover and the host-bacilli interplay during tuberculosis. Hussain Bhat K; Mukhopadhyay S Future Microbiol; 2015; 10(5):853-72. PubMed ID: 26000654 [TBL] [Abstract][Full Text] [Related]
37. Therapeutic efficacy of a tuberculosis DNA vaccine encoding heat shock protein 65 of Mycobacterium tuberculosis and the human interleukin 2 fusion gene. Changhong S; Hai Z; Limei W; Jiaze A; Li X; Tingfen Z; Zhikai X; Yong Z Tuberculosis (Edinb); 2009 Jan; 89(1):54-61. PubMed ID: 19056317 [TBL] [Abstract][Full Text] [Related]
38. Proteomics of Hoffmann E; Machelart A; Song OR; Brodin P Front Immunol; 2018; 9():86. PubMed ID: 29441067 [TBL] [Abstract][Full Text] [Related]
39. Mycobacterium tuberculosis: Manipulator of Protective Immunity. Korb VC; Chuturgoon AA; Moodley D Int J Mol Sci; 2016 Feb; 17(3):131. PubMed ID: 26927066 [TBL] [Abstract][Full Text] [Related]
40. Outcome of Mycobacterium tuberculosis and Toll-like receptor interaction: immune response or immune evasion? Saraav I; Singh S; Sharma S Immunol Cell Biol; 2014 Oct; 92(9):741-6. PubMed ID: 24983458 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]