These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
104 related articles for article (PubMed ID: 20662382)
1. New trends in bio/nanotechnology: stable proteins as advanced molecular tools for health and environment. Staiano M; Baldassarre M; Esposito M; Apicella E; Vitale R; Aurilia V; D'Auria S Environ Technol; 2010; 31(8-9):935-42. PubMed ID: 20662382 [TBL] [Abstract][Full Text] [Related]
2. D-trehalose/D-maltose-binding protein from the hyperthermophilic archaeon Thermococcus litoralis: the binding of trehalose and maltose results in different protein conformational states. Herman P; Staiano M; Marabotti A; Varriale A; Scirè A; Tanfani F; Vecer J; Rossi M; D'Auria S Proteins; 2006 Jun; 63(4):754-67. PubMed ID: 16532450 [TBL] [Abstract][Full Text] [Related]
3. [Stability of sugar-binding proteins: D-galactose/D-glucose-binding protein from Escherichia coli and trehalose/maltose-binding protein from Thermococcus litoralis]. Stepanenko OV; Povarova OI; Fonin AV; Stepanenko OV Tsitologiia; 2010; 52(11):950-4. PubMed ID: 21268855 [TBL] [Abstract][Full Text] [Related]
4. Pressure effects on the structure and stability of the hyperthermophilic trehalose/maltose-binding protein from Thermococcus litoralis. Marchal S; Staiano M; Marabotti A; Vitale A; Varriale A; Lange R; D'Auria S J Phys Chem B; 2009 Sep; 113(38):12804-8. PubMed ID: 19711955 [TBL] [Abstract][Full Text] [Related]
5. Enzymes and proteins from extremophiles as hyperstable probes in nanotechnology: the use of D-trehalose/D-maltose-binding protein from the hyperthermophilic archaeon Thermococcus litoralis for sugars monitoring. De Stefano L; Vitale A; Rea I; Staiano M; Rotiroti L; Labella T; Rendina I; Aurilia V; Rossi M; D'Auria S Extremophiles; 2008 Jan; 12(1):69-73. PubMed ID: 17221161 [TBL] [Abstract][Full Text] [Related]
6. Temperature modulates binding specificity and affinity of the d-trehalose/d-maltose-binding protein from the hyperthermophilic archaeon Thermococcus litoralis. Herman P; Barvik I; Staiano M; Vitale A; Vecer J; Rossi M; D'Auria S Biochim Biophys Acta; 2007 May; 1774(5):540-4. PubMed ID: 17448739 [TBL] [Abstract][Full Text] [Related]
7. Molecular adaptation strategies to high temperature and thermal denaturation mechanism of the D-trehalose/D-maltose-binding protein from the hyperthermophilic archaeon Thermococcus litoralis. Fessas D; Staiano M; Barbiroli A; Marabotti A; Schiraldi A; Varriale A; Rossi M; D'Auria S Proteins; 2007 Jun; 67(4):1002-9. PubMed ID: 17373708 [TBL] [Abstract][Full Text] [Related]
8. Construction of a reagentless glucose biosensor using molecular exciton luminescence. Der BS; Dattelbaum JD Anal Biochem; 2008 Apr; 375(1):132-40. PubMed ID: 18082614 [TBL] [Abstract][Full Text] [Related]
9. A thermostable sugar-binding protein from the Archaeon Pyrococcus horikoshii as a probe for the development of a stable fluorescence biosensor for diabetic patients. Staiano M; Sapio M; Scognamiglio V; Marabotti A; Facchiano AM; Bazzicalupo P; Rossi M; D'Auria S Biotechnol Prog; 2004; 20(5):1572-7. PubMed ID: 15458346 [TBL] [Abstract][Full Text] [Related]
10. Glucose biosensors as models for the development of advanced protein-based biosensors. Staiano M; Bazzicalupo P; Rossi M; D'Auria S Mol Biosyst; 2005 Dec; 1(5-6):354-62. PubMed ID: 16881003 [TBL] [Abstract][Full Text] [Related]
11. Periplasmic binding protein-based detection of maltose using liposomes: a new class of biorecognition elements in competitive assays. Edwards KA; Baeumner AJ Anal Chem; 2013 Mar; 85(5):2770-8. PubMed ID: 23411612 [TBL] [Abstract][Full Text] [Related]
12. On the possibility of real-time monitoring of glucose in cell culture by microdialysis using a fluorescent glucose binding protein sensor. Ge X; Rao G; Tolosa L Biotechnol Prog; 2008; 24(3):691-7. PubMed ID: 18422364 [TBL] [Abstract][Full Text] [Related]
13. Nanobiosensor design utilizing a periplasmic E. coli receptor protein immobilized within Au/polycarbonate nanopores. Tripathi A; Wang J; Luck LA; Suni II Anal Chem; 2007 Feb; 79(3):1266-70. PubMed ID: 17263364 [TBL] [Abstract][Full Text] [Related]
14. Maltose-binding protein: a versatile platform for prototyping biosensing. Medintz IL; Deschamps JR Curr Opin Biotechnol; 2006 Feb; 17(1):17-27. PubMed ID: 16413768 [TBL] [Abstract][Full Text] [Related]
15. Quantum dots: Resonant energy-transfer sensor. Willard DM; Van Orden A Nat Mater; 2003 Sep; 2(9):575-6. PubMed ID: 12951597 [No Abstract] [Full Text] [Related]
16. Engineering of ligand specificity of periplasmic binding protein for glucose sensing. Sakaguchi-Mikami A; Taneoka A; Yamoto R; Ferri S; Sode K Biotechnol Lett; 2008 Aug; 30(8):1453-60. PubMed ID: 18414800 [TBL] [Abstract][Full Text] [Related]