BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

263 related articles for article (PubMed ID: 20662383)

  • 1. Selection of low-temperature resistance in bacteria and potential applications.
    Wilson SL; Walker VK
    Environ Technol; 2010; 31(8-9):943-56. PubMed ID: 20662383
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ice-active characteristics of soil bacteria selected by ice-affinity.
    Wilson SL; Kelley DL; Walker VK
    Environ Microbiol; 2006 Oct; 8(10):1816-24. PubMed ID: 16958762
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Perturbation of bacterial ice nucleation activity by a grass antifreeze protein.
    Tomalty HE; Walker VK
    Biochem Biophys Res Commun; 2014 Sep; 452(3):636-41. PubMed ID: 25193694
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prospecting for ice association: characterization of freeze-thaw selected enrichment cultures from latitudinally distant soils.
    Wilson SL; Grogan P; Walker VK
    Can J Microbiol; 2012 Apr; 58(4):402-12. PubMed ID: 22435705
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cross-tolerance between osmotic and freeze-thaw stress in microbial assemblages from temperate lakes.
    Wilson SL; Frazer C; Cumming BF; Nuin PA; Walker VK
    FEMS Microbiol Ecol; 2012 Nov; 82(2):405-15. PubMed ID: 22551442
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The mechanism by which fish antifreeze proteins cause thermal hysteresis.
    Kristiansen E; Zachariassen KE
    Cryobiology; 2005 Dec; 51(3):262-80. PubMed ID: 16140290
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ice nucleation and antinucleation in nature.
    Zachariassen KE; Kristiansen E
    Cryobiology; 2000 Dec; 41(4):257-79. PubMed ID: 11222024
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bioprospecting for microbial products that affect ice crystal formation and growth.
    Christner BC
    Appl Microbiol Biotechnol; 2010 Jan; 85(3):481-9. PubMed ID: 19841917
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Animal ice-binding (antifreeze) proteins and glycolipids: an overview with emphasis on physiological function.
    Duman JG
    J Exp Biol; 2015 Jun; 218(Pt 12):1846-55. PubMed ID: 26085662
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular adaptations to psychrophily: the impact of 'omic' technologies.
    Casanueva A; Tuffin M; Cary C; Cowan DA
    Trends Microbiol; 2010 Aug; 18(8):374-81. PubMed ID: 20646925
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microbial diversity and activity through a permafrost/ground ice core profile from the Canadian high Arctic.
    Steven B; Pollard WH; Greer CW; Whyte LG
    Environ Microbiol; 2008 Dec; 10(12):3388-403. PubMed ID: 19025556
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Frequent freeze-thaw cycles yield diminished yet resistant and responsive microbial communities in two temperate soils: a laboratory experiment.
    Stres B; Philippot L; Faganeli J; Tiedje JM
    FEMS Microbiol Ecol; 2010 Nov; 74(2):323-35. PubMed ID: 20735477
    [TBL] [Abstract][Full Text] [Related]  

  • 13. From freezing to functioning: cellular strategies of cold-adapted bacteria for surviving in extreme environments.
    Choudhary P; Bhatt S; Chatterjee S
    Arch Microbiol; 2024 Jun; 206(7):329. PubMed ID: 38940837
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inhibition of bacterial ice nucleators by fish antifreeze glycoproteins.
    Parody-Morreale A; Murphy KP; Di Cera E; Fall R; DeVries AL; Gill SJ
    Nature; 1988 Jun; 333(6175):782-3. PubMed ID: 3386720
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Agar plate freezing assay for the in situ selection of transformed ice nucleating bacteria.
    Anastassopoulos E
    Cryobiology; 2006 Oct; 53(2):276-8. PubMed ID: 16854406
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Phylogenetic diversity and cold-adaptive hydrolytic enzymes of culturable psychrophilic bacteria associated with sea ice from high latitude ocean, Artic].
    Yu Y; Li HR; Chen B; Zeng YX; He JF
    Wei Sheng Wu Xue Bao; 2006 Apr; 46(2):184-90. PubMed ID: 16736573
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biological ice nucleation and ice distribution in cold-hardy ectothermic animals.
    Lee RE; Costanzo JP
    Annu Rev Physiol; 1998; 60():55-72. PubMed ID: 9558454
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Taxonomic characterization and the bio-potential of bacteria isolated from glacier ice cores in the High Arctic.
    Singh P; Singh SM; Roy U
    J Basic Microbiol; 2016 Mar; 56(3):275-85. PubMed ID: 26567474
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tracking heat-resistant, cold-thriving fluid milk spoilage bacteria from farm to packaged product.
    Huck JR; Sonnen M; Boor KJ
    J Dairy Sci; 2008 Mar; 91(3):1218-28. PubMed ID: 18292280
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phylogenetic diversity of alkaline protease-producing psychrotrophic bacteria from glacier and cold environments of Lahaul and Spiti, India.
    Salwan R; Gulati A; Kasana RC
    J Basic Microbiol; 2010 Apr; 50(2):150-9. PubMed ID: 20082368
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.