BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 20662387)

  • 1. Hydrogen production by hyperthermophilic and extremely thermophilic bacteria and archaea: mechanisms for reductant disposal.
    Verhaart MR; Bielen AA; van der Oost J; Stams AJ; Kengen SW
    Environ Technol; 2010; 31(8-9):993-1003. PubMed ID: 20662387
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of technetium(vII) reduction by cell suspensions of thermophilic bacteria and archaea.
    Chernyh NA; Gavrilov SN; Sorokin VV; German KE; Sergeant C; Simonoff M; Robb F; Slobodkin AI
    Appl Microbiol Biotechnol; 2007 Aug; 76(2):467-72. PubMed ID: 17619187
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Extremely thermophilic microorganisms for biomass conversion: status and prospects.
    Blumer-Schuette SE; Kataeva I; Westpheling J; Adams MW; Kelly RM
    Curr Opin Biotechnol; 2008 Jun; 19(3):210-7. PubMed ID: 18524567
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Upflow anaerobic sludge blanket reactor--a review.
    Bal AS; Dhagat NN
    Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The modular respiratory complexes involved in hydrogen and sulfur metabolism by heterotrophic hyperthermophilic archaea and their evolutionary implications.
    Schut GJ; Boyd ES; Peters JW; Adams MW
    FEMS Microbiol Rev; 2013 Mar; 37(2):182-203. PubMed ID: 22713092
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Exploitation of the extremely thermophilic Caldicellulosiruptor saccharolyticus in hydrogen and biogas production from biomasses.
    Herbel Z; Rákhely G; Bagi Z; Ivanova G; Acs N; Kovács E; Kovács KL
    Environ Technol; 2010; 31(8-9):1017-24. PubMed ID: 20662389
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 'That which does not kill us only makes us stronger': the role of carbon monoxide in thermophilic microbial consortia.
    Techtmann SM; Colman AS; Robb FT
    Environ Microbiol; 2009 May; 11(5):1027-37. PubMed ID: 19239487
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Polysaccharide degradation and synthesis by extremely thermophilic anaerobes.
    Vanfossen AL; Lewis DL; Nichols JD; Kelly RM
    Ann N Y Acad Sci; 2008 Mar; 1125():322-37. PubMed ID: 18378602
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Biohydrometallurgical technology of a complex copper concentrate process].
    Murav'ev MI; Fomchenko NV; Kondrat'eva TF
    Prikl Biokhim Mikrobiol; 2011; 47(6):663-71. PubMed ID: 22288195
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ecology. A starving majority deep beneath the seafloor.
    Jørgensen BB; D'Hondt S
    Science; 2006 Nov; 314(5801):932-4. PubMed ID: 17095684
    [No Abstract]   [Full Text] [Related]  

  • 11. Energetics of overall metabolic reactions of thermophilic and hyperthermophilic Archaea and bacteria.
    Amend JP; Shock EL
    FEMS Microbiol Rev; 2001 Apr; 25(2):175-243. PubMed ID: 11250035
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Process investigations of extreme thermophilic fermentations for hydrogen production: effect of bubble induction and reduced pressure.
    Sonnleitner A; Peintner C; Wukovits W; Friedl A; Schnitzhofer W
    Bioresour Technol; 2012 Aug; 118():170-6. PubMed ID: 22705521
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biocorrosive thermophilic microbial communities in Alaskan North Slope oil facilities.
    Duncan KE; Gieg LM; Parisi VA; Tanner RS; Tringe SG; Bristow J; Suflita JM
    Environ Sci Technol; 2009 Oct; 43(20):7977-84. PubMed ID: 19921923
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dissimilatory Fe(III) and Mn(IV) reduction.
    Lovley DR; Holmes DE; Nevin KP
    Adv Microb Physiol; 2004; 49():219-86. PubMed ID: 15518832
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biochemical diversity among sulfur-dependent, hyperthermophilic microorganisms.
    Adams MW
    FEMS Microbiol Rev; 1994 Oct; 15(2-3):261-77. PubMed ID: 7946471
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Cytoplasmic NAD(P)H-Dependent Polysulfide Reductase with Thiosulfate Reductase Activity from the Hyperthermophilic Bacterium Thermotoga maritima.
    Liang J; Huang H; Wang Y; Li L; Yi J; Wang S
    Microbiol Spectr; 2022 Aug; 10(4):e0043622. PubMed ID: 35762779
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biotechnological intensification of biogas production.
    Bagi Z; Acs N; Bálint B; Horváth L; Dobó K; Perei KR; Rákhely G; Kovács KL
    Appl Microbiol Biotechnol; 2007 Aug; 76(2):473-82. PubMed ID: 17503035
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Methanol-based industrial biotechnology: current status and future perspectives of methylotrophic bacteria.
    Schrader J; Schilling M; Holtmann D; Sell D; Filho MV; Marx A; Vorholt JA
    Trends Biotechnol; 2009 Feb; 27(2):107-15. PubMed ID: 19111927
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A variable-temperature direct electrochemical study of metalloproteins from hyperthermophilic microorganisms involved in hydrogen production from pyruvate.
    Smith ET; Blamey JM; Zhou ZH; Adams MW
    Biochemistry; 1995 May; 34(21):7161-9. PubMed ID: 7766626
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biological hydrogen production from nitrogen-deficient substrates.
    Hafner SD
    Biotechnol Bioeng; 2007 Jun; 97(2):435-7. PubMed ID: 17163516
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.