BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 20662388)

  • 1. Extremophile-inspired strategies for enzymatic biomass saccharification.
    Miller PS; Blum PH
    Environ Technol; 2010; 31(8-9):1005-15. PubMed ID: 20662388
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of pretreatment strategies for enzymatic saccharification and fermentation of barley straw to ethanol.
    Saha BC; Cotta MA
    N Biotechnol; 2010 Feb; 27(1):10-6. PubMed ID: 19874923
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Extremely thermophilic microorganisms for biomass conversion: status and prospects.
    Blumer-Schuette SE; Kataeva I; Westpheling J; Adams MW; Kelly RM
    Curr Opin Biotechnol; 2008 Jun; 19(3):210-7. PubMed ID: 18524567
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A whole cell biocatalyst for cellulosic ethanol production from dilute acid-pretreated corn stover hydrolyzates.
    Ryu S; Karim MN
    Appl Microbiol Biotechnol; 2011 Aug; 91(3):529-42. PubMed ID: 21519935
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hybrid process for ethanol production from rice straw.
    Chadha BS; Kanwar SS; Saini HS; Garcha HS
    Acta Microbiol Immunol Hung; 1995; 42(1):53-9. PubMed ID: 7620813
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hydrogen production by hyperthermophilic and extremely thermophilic bacteria and archaea: mechanisms for reductant disposal.
    Verhaart MR; Bielen AA; van der Oost J; Stams AJ; Kengen SW
    Environ Technol; 2010; 31(8-9):993-1003. PubMed ID: 20662387
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biocommodity Engineering.
    Lynd LR; Wyman CE; Gerngross TU
    Biotechnol Prog; 1999 Oct; 15(5):777-793. PubMed ID: 10514248
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Alcoholic fermentation of carbon sources in biomass hydrolysates by Saccharomyces cerevisiae: current status.
    van Maris AJ; Abbott DA; Bellissimi E; van den Brink J; Kuyper M; Luttik MA; Wisselink HW; Scheffers WA; van Dijken JP; Pronk JT
    Antonie Van Leeuwenhoek; 2006 Nov; 90(4):391-418. PubMed ID: 17033882
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of high solid concentration on enzymatic hydrolysis and fermentation of steam-exploded corn stover biomass.
    Lu Y; Wang Y; Xu G; Chu J; Zhuang Y; Zhang S
    Appl Biochem Biotechnol; 2010 Jan; 160(2):360-9. PubMed ID: 18626577
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Substrate perturbation alters the glycoside hydrolase activities and community composition of switchgrass-adapted bacterial consortia.
    Gladden JM; Eichorst SA; Hazen TC; Simmons BA; Singer SW
    Biotechnol Bioeng; 2012 May; 109(5):1140-5. PubMed ID: 22125273
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bioethanol production from ball milled bagasse using an on-site produced fungal enzyme cocktail and xylose-fermenting Pichia stipitis.
    Buaban B; Inoue H; Yano S; Tanapongpipat S; Ruanglek V; Champreda V; Pichyangkura R; Rengpipat S; Eurwilaichitr L
    J Biosci Bioeng; 2010 Jul; 110(1):18-25. PubMed ID: 20541110
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enzyme production by wood-rot and soft-rot fungi cultivated on corn fiber followed by simultaneous saccharification and fermentation.
    Shrestha P; Khanal SK; Pometto AL; van Leeuwen JH
    J Agric Food Chem; 2009 May; 57(10):4156-61. PubMed ID: 21314197
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Simultaneous saccharification and fermentation and partial saccharification and co-fermentation of lignocellulosic biomass for ethanol production.
    Doran-Peterson J; Jangid A; Brandon SK; DeCrescenzo-Henriksen E; Dien B; Ingram LO
    Methods Mol Biol; 2009; 581():263-80. PubMed ID: 19768628
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Simultaneous saccharification and fermentation of rice straw into ethanol.
    Chadha BS; Kanwar SS; Garcha HS
    Acta Microbiol Immunol Hung; 1995; 42(1):71-5. PubMed ID: 7620815
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bio-ethanol from water hyacinth biomass: an evaluation of enzymatic saccharification strategy.
    Aswathy US; Sukumaran RK; Devi GL; Rajasree KP; Singhania RR; Pandey A
    Bioresour Technol; 2010 Feb; 101(3):925-30. PubMed ID: 19796935
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Kinetics of simultaneous saccharification and lactic acid fermentation processes.
    Luo J; Xia L; Lin J; Cen P
    Biotechnol Prog; 1997; 13(6):762-7. PubMed ID: 9413134
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Consolidated bioprocessing of cellulosic biomass: an update.
    Lynd LR; van Zyl WH; McBride JE; Laser M
    Curr Opin Biotechnol; 2005 Oct; 16(5):577-83. PubMed ID: 16154338
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pipeline transport and simultaneous saccharification of corn stover.
    Kumar A; Cameron JB; Flynn PC
    Bioresour Technol; 2005 May; 96(7):819-29. PubMed ID: 15607196
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Supercritical CO2 and ionic liquids for the pretreatment of lignocellulosic biomass in bioethanol production.
    Gu T; Held MA; Faik A
    Environ Technol; 2013; 34(13-16):1735-49. PubMed ID: 24350431
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Scale-up of ethanol production from winter barley by the EDGE (enhanced dry grind enzymatic) process in fermentors up to 300 l.
    Nghiem NP; Taylor F; Johnston DB; Shetty JK; Hicks KB
    Appl Biochem Biotechnol; 2011 Oct; 165(3-4):870-82. PubMed ID: 21667197
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.