BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 20662492)

  • 1. Templated synthesis of DNA nanotubes with controlled, predetermined lengths.
    Lo PK; Altvater F; Sleiman HF
    J Am Chem Soc; 2010 Aug; 132(30):10212-4. PubMed ID: 20662492
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamic DNA Nanotubes: Reversible Switching between Single and Double-Stranded Forms, and Effect of Base Deletions.
    Rahbani JF; Hariri AA; Cosa G; Sleiman HF
    ACS Nano; 2015 Dec; 9(12):11898-908. PubMed ID: 26556531
    [TBL] [Abstract][Full Text] [Related]  

  • 3. DNA nanotubes self-assembled from triple-crossover tiles as templates for conductive nanowires.
    Liu D; Park SH; Reif JH; LaBean TH
    Proc Natl Acad Sci U S A; 2004 Jan; 101(3):717-22. PubMed ID: 14709674
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Self-assembly of metal-DNA triangles and DNA nanotubes with synthetic junctions.
    Yang H; Lo PK; McLaughlin CK; Hamblin GD; Aldaye FA; Sleiman HF
    Methods Mol Biol; 2011; 749():33-47. PubMed ID: 21674363
    [TBL] [Abstract][Full Text] [Related]  

  • 5. DNA-directed self-assembling of carbon nanotubes.
    Li S; He P; Dong J; Guo Z; Dai L
    J Am Chem Soc; 2005 Jan; 127(1):14-5. PubMed ID: 15631425
    [TBL] [Abstract][Full Text] [Related]  

  • 6. DNA-templated carbon nanotube field-effect transistor.
    Keren K; Berman RS; Buchstab E; Sivan U; Braun E
    Science; 2003 Nov; 302(5649):1380-2. PubMed ID: 14631035
    [TBL] [Abstract][Full Text] [Related]  

  • 7. DNA origami templated self-assembly of discrete length single wall carbon nanotubes.
    Zhao Z; Liu Y; Yan H
    Org Biomol Chem; 2013 Jan; 11(4):596-8. PubMed ID: 23208726
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Controlled gold nanoparticle diffusion in nanotubes: Platfom of partial functionalization and gold capping.
    Son SJ; Lee SB
    J Am Chem Soc; 2006 Dec; 128(50):15974-5. PubMed ID: 17165716
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modular construction of DNA nanotubes of tunable geometry and single- or double-stranded character.
    Aldaye FA; Lo PK; Karam P; McLaughlin CK; Cosa G; Sleiman HF
    Nat Nanotechnol; 2009 Jun; 4(6):349-52. PubMed ID: 19498394
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A facile method towards cyclic assembly of gold nanoparticles using DNA template alone.
    Ohshiro T; Zako T; Watanabe-Tamaki R; Tanaka T; Maeda M
    Chem Commun (Camb); 2010 Sep; 46(33):6132-4. PubMed ID: 20664868
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular scale architecture: engineered three- and four-way junctions.
    Wilkinson S; Diechtierow M; Estabrook RA; Schmidt F; Hüben M; Weinhold E; Reich NO
    Bioconjug Chem; 2008 Feb; 19(2):470-5. PubMed ID: 18069780
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Loading and selective release of cargo in DNA nanotubes with longitudinal variation.
    Lo PK; Karam P; Aldaye FA; McLaughlin CK; Hamblin GD; Cosa G; Sleiman HF
    Nat Chem; 2010 Apr; 2(4):319-28. PubMed ID: 21124515
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Self-assembly of chiral DNA nanotubes.
    Mitchell JC; Harris JR; Malo J; Bath J; Turberfield AJ
    J Am Chem Soc; 2004 Dec; 126(50):16342-3. PubMed ID: 15600334
    [TBL] [Abstract][Full Text] [Related]  

  • 14. DNA-controlled assembly of soft nanoparticles.
    Jakobsen U; Simonsen AC; Vogel S
    J Am Chem Soc; 2008 Aug; 130(32):10462-3. PubMed ID: 18642914
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Programming DNA tube circumferences.
    Yin P; Hariadi RF; Sahu S; Choi HM; Park SH; Labean TH; Reif JH
    Science; 2008 Aug; 321(5890):824-6. PubMed ID: 18687961
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Production of semiconducting gold-DNA nanowires by application of DC bias.
    Joshi RK; West L; Kumar A; Joshi N; Alwarappan S; Kumar A
    Nanotechnology; 2010 May; 21(18):185604. PubMed ID: 20388979
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rupture force between the third strand and the double strand within a triplex DNA.
    Ling L; Butt HJ; Berger R
    J Am Chem Soc; 2004 Nov; 126(43):13992-7. PubMed ID: 15506761
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nucleobase-templated polymerization: copying the chain length and polydispersity of living polymers into conjugated polymers.
    Lo PK; Sleiman HF
    J Am Chem Soc; 2009 Apr; 131(12):4182-3. PubMed ID: 19275231
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Plasmonic response of DNA-assembled gold nanorods: effect of DNA linker length, temperature and linker/nanoparticles ratio.
    Vial S; Nykypanchuk D; Deepak FL; Prado M; Gang O
    J Colloid Interface Sci; 2014 Nov; 433():34-42. PubMed ID: 25112910
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nanoparticle enhanced surface plasmon resonance biosensing: application of gold nanorods.
    Law WC; Yong KT; Baev A; Hu R; Prasad PN
    Opt Express; 2009 Oct; 17(21):19041-6. PubMed ID: 20372639
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.