These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 20662492)

  • 61. Conductive metal nanowires templated by the nucleoprotein filaments, complex of DNA and RecA protein.
    Nishinaka T; Takano A; Doi Y; Hashimoto M; Nakamura A; Matsushita Y; Kumaki J; Yashima E
    J Am Chem Soc; 2005 Jun; 127(22):8120-5. PubMed ID: 15926839
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Electroanalysis using macro-, micro-, and nanochemical architectures on electrode surfaces. Bulk surface modification of glassy carbon microspheres with gold nanoparticles and their electrical wiring using carbon nanotubes.
    Dai X; Wildgoose GG; Salter C; Crossley A; Compton RG
    Anal Chem; 2006 Sep; 78(17):6102-8. PubMed ID: 16944890
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Gold and silica-coated gold nanoparticles as thermographic labels for DNA detection.
    Cerruti MG; Sauthier M; Leonard D; Liu D; Duscher G; Feldheim DL; Franzen S
    Anal Chem; 2006 May; 78(10):3282-8. PubMed ID: 16689528
    [TBL] [Abstract][Full Text] [Related]  

  • 64. DNA-templated three-branched nanostructures for nanoelectronic devices.
    Becerril HA; Stoltenberg RM; Wheeler DR; Davis RC; Harb JN; Woolley AT
    J Am Chem Soc; 2005 Mar; 127(9):2828-9. PubMed ID: 15740099
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Synthesis of collagen nanotubes with highly regular dimensions through membrane-templated layer-by-layer assembly.
    Landoulsi J; Roy CJ; Dupont-Gillain C; Demoustier-Champagne S
    Biomacromolecules; 2009 May; 10(5):1021-4. PubMed ID: 19371025
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Theory of structure-based carbon nanotube separations by ion-exchange chromatography of DNA/CNT hybrids.
    Lustig SR; Jagota A; Khripin C; Zheng M
    J Phys Chem B; 2005 Feb; 109(7):2559-66. PubMed ID: 16851257
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Electrospray-ionization mass spectrometry for screening the specificity and stability of single-stranded-DNA templated self-assemblies.
    Janssen PG; van Dongen JL; Meijer EW; Schenning AP
    Chemistry; 2009; 15(2):352-60. PubMed ID: 19040227
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Nanowires enabling signal-enhanced nanoscale Raman spectroscopy.
    Becker M; Sivakov V; Gösele U; Stelzner T; Andrä G; Reich HJ; Hoffmann S; Michler J; Christiansen SH
    Small; 2008 Apr; 4(4):398-404. PubMed ID: 18383193
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Well-defined organic nanotubes from multicomponent bottlebrush copolymers.
    Huang K; Rzayev J
    J Am Chem Soc; 2009 May; 131(19):6880-5. PubMed ID: 19397329
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Labeled gold nanoparticles immobilized at smooth metallic substrates: systematic investigation of surface plasmon resonance and surface-enhanced Raman scattering.
    Driskell JD; Lipert RJ; Porter MD
    J Phys Chem B; 2006 Sep; 110(35):17444-51. PubMed ID: 16942083
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Site-Specific Surface Functionalization of Gold Nanorods Using DNA Origami Clamps.
    Shen C; Lan X; Lu X; Meyer TA; Ni W; Ke Y; Wang Q
    J Am Chem Soc; 2016 Feb; 138(6):1764-7. PubMed ID: 26824749
    [TBL] [Abstract][Full Text] [Related]  

  • 72. DNA origami-based nanoribbons: assembly, length distribution, and twist.
    Jungmann R; Scheible M; Kuzyk A; Pardatscher G; Castro CE; Simmel FC
    Nanotechnology; 2011 Jul; 22(27):275301. PubMed ID: 21597145
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Au nanorod helical superstructures with designed chirality.
    Lan X; Lu X; Shen C; Ke Y; Ni W; Wang Q
    J Am Chem Soc; 2015 Jan; 137(1):457-62. PubMed ID: 25516475
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Synthesis and assembly of conjugates bearing specific numbers of DNA strands per gold nanoparticle.
    Borovok N; Gillon E; Kotlyar A
    Bioconjug Chem; 2012 May; 23(5):916-22. PubMed ID: 22515478
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Hybridisation of short DNA molecules investigated with in situ atomic force microscopy.
    Holmberg M; Kühle A; Garnaes J; Boisen A
    Ultramicroscopy; 2003; 97(1-4):257-61. PubMed ID: 12801678
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Kinetically controlled, shape-directed assembly of nanorods.
    Ciszek JW; Huang L; Wang Y; Mirkin CA
    Small; 2008 Feb; 4(2):206-10. PubMed ID: 18214876
    [No Abstract]   [Full Text] [Related]  

  • 77. Advancing Wireframe DNA Nanostructures Using Single-Molecule Fluorescence Microscopy Techniques.
    Platnich CM; Hariri AA; Sleiman HF; Cosa G
    Acc Chem Res; 2019 Nov; 52(11):3199-3210. PubMed ID: 31675207
    [TBL] [Abstract][Full Text] [Related]  

  • 78. End-to-end assembly of gold nanorods via oligopeptide linking and surfactant control.
    Jain T; Roodbeen R; Reeler NE; Vosch T; Jensen KJ; Bjørnholm T; Nørgaard K
    J Colloid Interface Sci; 2012 Jun; 376(1):83-90. PubMed ID: 22480399
    [TBL] [Abstract][Full Text] [Related]  

  • 79. A facile and efficient method to modify gold nanorods with thiolated DNA at a low pH value.
    Shi D; Song C; Jiang Q; Wang ZG; Ding B
    Chem Commun (Camb); 2013 Mar; 49(25):2533-5. PubMed ID: 23423612
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Templates for DNA-templated Fe3O4 nanoparticles.
    Nyamjav D; Ivanisevic A
    Biomaterials; 2005 May; 26(15):2749-57. PubMed ID: 15585279
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.