These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
180 related articles for article (PubMed ID: 20662779)
41. Photorhabdus phase variants express a novel fimbrial locus, mad, essential for symbiosis. Somvanshi VS; Kaufmann-Daszczuk B; Kim KS; Mallon S; Ciche TA Mol Microbiol; 2010 Aug; 77(4):1021-38. PubMed ID: 20572934 [TBL] [Abstract][Full Text] [Related]
42. A type II polyketide synthase is responsible for anthraquinone biosynthesis in Photorhabdus luminescens. Brachmann AO; Joyce SA; Jenke-Kodama H; Schwär G; Clarke DJ; Bode HB Chembiochem; 2007 Sep; 8(14):1721-8. PubMed ID: 17722122 [TBL] [Abstract][Full Text] [Related]
43. Strains of Photorhabdus spp. associated with polish Heterorhabditis isolates: their molecular and phenotypic characterization and symbiont exchange. Kazimierczak W; Skrzypek H; Sajnaga E; Skowronek M; Waśko A; Kreft A Arch Microbiol; 2017 Sep; 199(7):979-989. PubMed ID: 28382473 [TBL] [Abstract][Full Text] [Related]
44. The genetic basis of the symbiosis between Photorhabdus and its invertebrate hosts. Clarke DJ Adv Appl Microbiol; 2014; 88():1-29. PubMed ID: 24767424 [TBL] [Abstract][Full Text] [Related]
45. Enhanced production of trans-cinnamic acid in Photorhabdus luminescens with homolog expression and deletion strategies. Ulgen Gokduman F; Yılmaz S; Bode HB J Appl Microbiol; 2024 Jul; 135(7):. PubMed ID: 38906846 [TBL] [Abstract][Full Text] [Related]
47. A syringe-like injection mechanism in Photorhabdus luminescens toxins. Gatsogiannis C; Lang AE; Meusch D; Pfaumann V; Hofnagel O; Benz R; Aktories K; Raunser S Nature; 2013 Mar; 495(7442):520-3. PubMed ID: 23515159 [TBL] [Abstract][Full Text] [Related]
48. A Phosphopantetheinyl transferase homolog is essential for Photorhabdus luminescens to support growth and reproduction of the entomopathogenic nematode Heterorhabditis bacteriophora. Ciche TA; Bintrim SB; Horswill AR; Ensign JC J Bacteriol; 2001 May; 183(10):3117-26. PubMed ID: 11325940 [TBL] [Abstract][Full Text] [Related]
49. Cinnamic acid, an autoinducer of its own biosynthesis, is processed via Hca enzymes in Photorhabdus luminescens. Chalabaev S; Turlin E; Bay S; Ganneau C; Brito-Fravallo E; Charles JF; Danchin A; Biville F Appl Environ Microbiol; 2008 Mar; 74(6):1717-25. PubMed ID: 18245247 [TBL] [Abstract][Full Text] [Related]
50. Motility is required for the competitive fitness of entomopathogenic Photorhabdus luminescens during insect infection. Easom CA; Clarke DJ BMC Microbiol; 2008 Oct; 8():168. PubMed ID: 18834522 [TBL] [Abstract][Full Text] [Related]
51. A hexA homologue from Photorhabdus regulates pathogenicity, symbiosis and phenotypic variation. Joyce SA; Clarke DJ Mol Microbiol; 2003 Mar; 47(5):1445-57. PubMed ID: 12603747 [TBL] [Abstract][Full Text] [Related]
52. The Insect Pathogen Photorhabdus luminescens Protects Plants from Phytopathogenic Fusarium graminearum via Chitin Degradation. Dominelli N; Platz F; Heermann R Appl Environ Microbiol; 2022 Jun; 88(11):e0064522. PubMed ID: 35604230 [TBL] [Abstract][Full Text] [Related]
53. Identification and characterization of a novel gene involved in the trans-specific nematicidal activity of Photorhabdus luminescens LN2. Qiu X; Han R; Yan X; Liu M; Cao L; Yoshiga T; Kondo E Appl Environ Microbiol; 2009 Jun; 75(12):4221-3. PubMed ID: 19376907 [TBL] [Abstract][Full Text] [Related]
54. Probing the tri-trophic interaction between insects, nematodes and Photorhabdus. Eleftherianos I; Joyce S; Ffrench-Constant RH; Clarke DJ; Reynolds SE Parasitology; 2010 Sep; 137(11):1695-706. PubMed ID: 20500922 [TBL] [Abstract][Full Text] [Related]
55. Immune gene transcription in Drosophila adult flies infected by entomopathogenic nematodes and their mutualistic bacteria. Castillo JC; Shokal U; Eleftherianos I J Insect Physiol; 2013 Feb; 59(2):179-85. PubMed ID: 22902989 [TBL] [Abstract][Full Text] [Related]
56. Identification and characterization of Photorhabdus temperata mutants altered in hemolysis and virulence. Chapman C; Tisa LS Can J Microbiol; 2016 Aug; 62(8):657-67. PubMed ID: 27300499 [TBL] [Abstract][Full Text] [Related]
57. Changes in Caenorhabditis elegans gene expression following exposure to Photorhabdus luminescens strain TT01. Hoinville ME; Wollenberg AC Dev Comp Immunol; 2018 May; 82():165-176. PubMed ID: 29203330 [TBL] [Abstract][Full Text] [Related]
58. Bioactive derivatives of isopropylstilbene from mutasynthesis and chemical synthesis. Kronenwerth M; Brachmann AO; Kaiser M; Bode HB Chembiochem; 2014 Dec; 15(18):2689-91. PubMed ID: 25346446 [TBL] [Abstract][Full Text] [Related]
59. Phenotypic and genomic comparison of Photorhabdus luminescens subsp. laumondii TT01 and a widely used rifampicin-resistant Photorhabdus luminescens laboratory strain. Zamora-Lagos MA; Eckstein S; Langer A; Gazanis A; Pfeiffer F; Habermann B; Heermann R BMC Genomics; 2018 Nov; 19(1):854. PubMed ID: 30497380 [TBL] [Abstract][Full Text] [Related]
60. Two novel XRE-like transcriptional regulators control phenotypic heterogeneity in Photorhabdus luminescens cell populations. Eckstein S; Brehm J; Seidel M; Lechtenfeld M; Heermann R BMC Microbiol; 2021 Feb; 21(1):63. PubMed ID: 33627070 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]