BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

363 related articles for article (PubMed ID: 20664064)

  • 1. Autocrine purinergic receptor signaling is essential for macrophage chemotaxis.
    Kronlage M; Song J; Sorokin L; Isfort K; Schwerdtle T; Leipziger J; Robaye B; Conley PB; Kim HC; Sargin S; Schön P; Schwab A; Hanley PJ
    Sci Signal; 2010 Jul; 3(132):ra55. PubMed ID: 20664064
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Real-time imaging reveals that P2Y2 and P2Y12 receptor agonists are not chemoattractants and macrophage chemotaxis to complement C5a is phosphatidylinositol 3-kinase (PI3K)- and p38 mitogen-activated protein kinase (MAPK)-independent.
    Isfort K; Ebert F; Bornhorst J; Sargin S; Kardakaris R; Pasparakis M; Bähler M; Schwerdtle T; Schwab A; Hanley PJ
    J Biol Chem; 2011 Dec; 286(52):44776-87. PubMed ID: 22057273
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Teasing out the role of ATP in immune responses. See referenced article, J. Biol. Chem. 2011, 286, 44776–44787. Real-time imaging reveals that P2Y2 and P2Y12 receptor agonists are not chemoattractants and macrophage chemotaxis to complement C5a is phosphatidylinositol 3-kinase (PI3K)- and p38 mitogen-activated protein kinase (MAPK)-independent.
    J Biol Chem; 2011 Dec; 286(52):e99984. PubMed ID: 22199395
    [No Abstract]   [Full Text] [Related]  

  • 4. Nucleotides released by apoptotic cells act as a find-me signal to promote phagocytic clearance.
    Elliott MR; Chekeni FB; Trampont PC; Lazarowski ER; Kadl A; Walk SF; Park D; Woodson RI; Ostankovich M; Sharma P; Lysiak JJ; Harden TK; Leitinger N; Ravichandran KS
    Nature; 2009 Sep; 461(7261):282-6. PubMed ID: 19741708
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Involvement of adenosine A3 receptors in the chemotactic navigation of macrophages towards apoptotic cells.
    Joós G; Jákim J; Kiss B; Szamosi R; Papp T; Felszeghy S; Sághy T; Nagy G; Szondy Z
    Immunol Lett; 2017 Mar; 183():62-72. PubMed ID: 28188820
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Adenine nucleotides inhibit cytokine generation by human mast cells through a Gs-coupled receptor.
    Feng C; Mery AG; Beller EM; Favot C; Boyce JA
    J Immunol; 2004 Dec; 173(12):7539-47. PubMed ID: 15585881
    [TBL] [Abstract][Full Text] [Related]  

  • 7. ATP release guides neutrophil chemotaxis via P2Y2 and A3 receptors.
    Chen Y; Corriden R; Inoue Y; Yip L; Hashiguchi N; Zinkernagel A; Nizet V; Insel PA; Junger WG
    Science; 2006 Dec; 314(5806):1792-5. PubMed ID: 17170310
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Adrenergic receptor activation involves ATP release and feedback through purinergic receptors.
    Sumi Y; Woehrle T; Chen Y; Yao Y; Li A; Junger WG
    Am J Physiol Cell Physiol; 2010 Nov; 299(5):C1118-26. PubMed ID: 20668211
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gravity loading induces adenosine triphosphate release and phosphorylation of extracellular signal-regulated kinases in human periodontal ligament cells.
    Ito M; Arakawa T; Okayama M; Shitara A; Mizoguchi I; Takuma T
    J Investig Clin Dent; 2014 Nov; 5(4):266-74. PubMed ID: 23798356
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Two subtypes of G protein-coupled nucleotide receptors, P2Y(1) and P2Y(2) are involved in calcium signalling in glioma C6 cells.
    Sabala P; Czajkowski R; Przybyłek K; Kalita K; Kaczmarek L; Barańska J
    Br J Pharmacol; 2001 Jan; 132(2):393-402. PubMed ID: 11159687
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Adenine nucleotides inhibit recombinant N-type calcium channels via G protein-coupled mechanisms in HEK 293 cells; involvement of the P2Y13 receptor-type.
    Wirkner K; Schweigel J; Gerevich Z; Franke H; Allgaier C; Barsoumian EL; Draheim H; Illes P
    Br J Pharmacol; 2004 Jan; 141(1):141-51. PubMed ID: 14662731
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Involvement of P2X4 and P2Y12 receptors in ATP-induced microglial chemotaxis.
    Ohsawa K; Irino Y; Nakamura Y; Akazawa C; Inoue K; Kohsaka S
    Glia; 2007 Apr; 55(6):604-16. PubMed ID: 17299767
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stage-specific expression of P2Y receptors, ecto-apyrase, and ecto-5'-nucleotidase in myeloid leukocytes.
    Clifford EE; Martin KA; Dalal P; Thomas R; Dubyak GR
    Am J Physiol; 1997 Sep; 273(3 Pt 1):C973-87. PubMed ID: 9316419
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Purinergic P2Y2 receptors induce increased MCP-1/CCL2 synthesis and release from rat alveolar and peritoneal macrophages.
    Stokes L; Surprenant A
    J Immunol; 2007 Nov; 179(9):6016-23. PubMed ID: 17947675
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pharmacological characterization of P2Y receptor subtypes on isolated tiger salamander Müller cells.
    Reifel Saltzberg JM; Garvey KA; Keirstead SA
    Glia; 2003 Apr; 42(2):149-59. PubMed ID: 12655599
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nucleotide transmitters ATP and ADP mediate intercellular calcium wave communication via P2Y12/13 receptors among BV-2 microglia.
    Jiang P; Xing F; Guo B; Yang J; Li Z; Wei W; Hu F; Lee I; Zhang X; Pan L; Xu J
    PLoS One; 2017; 12(8):e0183114. PubMed ID: 28800362
    [TBL] [Abstract][Full Text] [Related]  

  • 17. P2Y(6) agonist uridine 5'-diphosphate promotes host defense against bacterial infection via monocyte chemoattractant protein-1-mediated monocytes/macrophages recruitment.
    Zhang Z; Wang Z; Ren H; Yue M; Huang K; Gu H; Liu M; Du B; Qian M
    J Immunol; 2011 May; 186(9):5376-87. PubMed ID: 21444765
    [TBL] [Abstract][Full Text] [Related]  

  • 18. ATP-induced chemotaxis of microglial processes requires P2Y receptor-activated initiation of outward potassium currents.
    Wu LJ; Vadakkan KI; Zhuo M
    Glia; 2007 Jun; 55(8):810-21. PubMed ID: 17357150
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cell biology. Purinergic chemotaxis.
    Linden J
    Science; 2006 Dec; 314(5806):1689-90. PubMed ID: 17170280
    [No Abstract]   [Full Text] [Related]  

  • 20. Purinergic receptor inhibition prevents the development of smoke-induced lung injury and emphysema.
    Cicko S; Lucattelli M; Müller T; Lommatzsch M; De Cunto G; Cardini S; Sundas W; Grimm M; Zeiser R; Dürk T; Zissel G; Boeynaems JM; Sorichter S; Ferrari D; Di Virgilio F; Virchow JC; Lungarella G; Idzko M
    J Immunol; 2010 Jul; 185(1):688-97. PubMed ID: 20519655
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.