These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

77 related articles for article (PubMed ID: 20664663)

  • 1. Brillouin gain suppression in photonic crystal fibers with random acoustically microstructured cores.
    Spring J; Ward B
    Opt Lett; 2010 Jan; 35(1):31-3. PubMed ID: 20664663
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Finite element analysis of Brillouin gain in SBS-suppressing optical fibers with non-uniform acoustic velocity profiles.
    Ward B; Spring J
    Opt Express; 2009 Aug; 17(18):15685-99. PubMed ID: 19724568
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Experimental studies on the core-structure dependence of backward Brillouin gain in solid-core photonic crystal fibers.
    Ji G; Huang Z; He W; Yin R; Zheng Y; Kumar V; Jiang X; Leng Y; Pang M
    Opt Express; 2023 Oct; 31(22):35742-35753. PubMed ID: 38017739
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analysis and optimization of acoustic speed profiles with large transverse variations for mitigation of stimulated Brillouin scattering in optical fibers.
    Yoo S; Codemard CA; Jeong Y; Sahu JK; Nilsson J
    Appl Opt; 2010 Mar; 49(8):1388-99. PubMed ID: 20220896
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Experimental investigation on Brillouin scattering property in highly nonlinear photonic crystal fiber with hybrid core.
    Zou W; He Z; Hotate K
    Opt Express; 2012 May; 20(10):11083-90. PubMed ID: 22565731
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Acoustically segmented photonic crystal fiber for single-frequency high-power laser applications.
    Robin C; Dajani I
    Opt Lett; 2011 Jul; 36(14):2641-3. PubMed ID: 21765494
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modeling of inter-modal Brillouin gain in higher-order-mode fibers.
    Ward B; Mermelstein M
    Opt Express; 2010 Feb; 18(3):1952-8. PubMed ID: 20174024
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Brillouin gain-coefficient measurement for bismuth-oxide-based photonic crystal fiber under significant beam reflection at splicing points.
    Lee JH; Song KY; Yoon HJ; Kim JS; Hasegawa T; Nagashima T; Ohara S; Sugimoto N
    Opt Lett; 2009 Sep; 34(17):2670-2. PubMed ID: 19724527
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Brillouin scattering spectrum in photonic crystal fiber with a partially germanium-doped core.
    Zou L; Bao X; Chen L
    Opt Lett; 2003 Nov; 28(21):2022-4. PubMed ID: 14587802
    [TBL] [Abstract][Full Text] [Related]  

  • 10. SBS threshold measurements and acoustic beam propagation modeling in guiding and anti-guiding single mode optical fibers.
    Mermelstein MD
    Opt Express; 2009 Aug; 17(18):16225-37. PubMed ID: 19724622
    [TBL] [Abstract][Full Text] [Related]  

  • 11. More than threefold expansion of highly nonlinear photonic crystal fiber cores for low-loss fusion splicing.
    Chen Z; Xiong C; Xiao LM; Wadsworth WJ; Birks TA
    Opt Lett; 2009 Jul; 34(14):2240-2. PubMed ID: 19823561
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Depolarized guided acoustic wave Brillouin scattering in hollow-core photonic crystal fibers.
    Zhong WE; Stiller B; Elser D; Heim B; Marquardt C; Leuchs G
    Opt Express; 2015 Oct; 23(21):27707-14. PubMed ID: 26480433
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stimulated Brillouin scattering of visible light in small-core photonic crystal fibers.
    Woodward RI; Kelleher EJ; Popov SV; Taylor JR
    Opt Lett; 2014 Apr; 39(8):2330-3. PubMed ID: 24978985
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Brillouin spectroscopy of YAG-derived optical fibers.
    Dragic P; Law PC; Ballato J; Hawkins T; Foy P
    Opt Express; 2010 May; 18(10):10055-67. PubMed ID: 20588859
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Observation of acoustically induced modulation instability in a Brillouin photonic crystal fiber laser.
    Stiller B; Sylvestre T
    Opt Lett; 2013 May; 38(9):1570-2. PubMed ID: 23632555
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Design and analysis of single-mode tellurite photonic crystal fibers for stimulated Brillouin scattering based slow-light generation.
    Jain V; Sharma S; Saini TS; Kumar A; Sinha RK
    Appl Opt; 2016 Sep; 55(25):6791-6. PubMed ID: 27607250
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structure fits the purpose: photonic crystal fibers for evanescent-field surface-enhanced Raman spectroscopy.
    Khaing Oo MK; Han Y; Kanka J; Sukhishvili S; Du H
    Opt Lett; 2010 Feb; 35(4):466-8. PubMed ID: 20160786
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Numerical comparison between conventional dispersion compensating fibers and photonic crystal fibers as lumped Raman amplifiers.
    Castellani CE; Cani SP; Segatto ME; Pontes MJ; Romero MA
    Opt Express; 2009 Dec; 17(25):23169-80. PubMed ID: 20052245
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Experimental and theoretical investigations of photonic crystal fiber amplifier with 260 W output.
    Dajani I; Vergien C; Robin C; Zeringue C
    Opt Express; 2009 Dec; 17(26):24317-33. PubMed ID: 20052142
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multimode Brillouin spectrum in a long tapered birefringent photonic crystal fiber.
    Tchahame JC; Beugnot JC; Kudlinski A; Sylvestre T
    Opt Lett; 2015 Sep; 40(18):4281-4. PubMed ID: 26371916
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.