BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 20664847)

  • 1. Randomly distributed arrays of optically coded functional microbeads for toxicity screening and monitoring.
    Ahn JM; Kim JH; Kim JH; Gu MB
    Lab Chip; 2010 Oct; 10(20):2695-701. PubMed ID: 20664847
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A microfluidic device with microbead array for sensitive virus detection and genotyping using quantum dots as fluorescence labels.
    Zhang H; Xu T; Li CW; Yang M
    Biosens Bioelectron; 2010 Jul; 25(11):2402-7. PubMed ID: 20483585
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A prototype microfluidic chip using fluorescent yeast for detection of toxic compounds.
    García-Alonso J; Greenway GM; Hardege JD; Haswell SJ
    Biosens Bioelectron; 2009 Jan; 24(5):1508-11. PubMed ID: 18805688
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A microbead array chemical sensor using capillary-based sample introduction: toward the development of an "electronic tongue".
    Sohn YS; Goodey A; Anslyn EV; McDevitt JT; Shear JB; Neikirk DP
    Biosens Bioelectron; 2005 Aug; 21(2):303-12. PubMed ID: 16023957
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A cell array biosensor for environmental toxicity analysis.
    Lee JH; Mitchell RJ; Kim BC; Cullen DC; Gu MB
    Biosens Bioelectron; 2005 Sep; 21(3):500-7. PubMed ID: 16076440
    [TBL] [Abstract][Full Text] [Related]  

  • 6. On-chip microfluidic sorting with fluorescence spectrum detection and multiway separation.
    Sugino H; Ozaki K; Shirasaki Y; Arakawa T; Shoji S; Funatsu T
    Lab Chip; 2009 May; 9(9):1254-60. PubMed ID: 19370245
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A dip-stick type biosensor using bioluminescent bacteria encapsulated in color-coded alginate microbeads for detection of water toxicity.
    Jung I; Seo HB; Lee JE; Kim BC; Gu MB
    Analyst; 2014 Sep; 139(18):4696-701. PubMed ID: 25057512
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Whole cell biosensing via recA::mCherry and LED-based flow-through fluorometry.
    Martineau RL; Stout V; Towe BC
    Biosens Bioelectron; 2009 Dec; 25(4):759-66. PubMed ID: 19800215
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fabrication of quantum dots-encoded microbeads with a simple capillary fluidic device and their application for biomolecule detection.
    Zhang P; He Y; Ruan Z; Chen FF; Yang J
    J Colloid Interface Sci; 2012 Nov; 385(1):8-14. PubMed ID: 22863065
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Combining multiple optical trapping with microflow manipulation for the rapid bioanalytics on microparticles in a chip.
    Boer G; Johann R; Rohner J; Merenda F; Delacrétaz G; Renaud P; Salathé RP
    Rev Sci Instrum; 2007 Nov; 78(11):116101. PubMed ID: 18052509
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Real-time detection of the early event of cytotoxicity of herbal ingredients on single leukemia cells studied in a microfluidic biochip.
    Li X; Xue X; Li PC
    Integr Biol (Camb); 2009 Jan; 1(1):90-8. PubMed ID: 20023795
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Towards toxicity detection using a lab-on-chip based on the integration of MOEMS and whole-cell sensors.
    Elman NM; Ben-Yoav H; Sternheim M; Rosen R; Krylov S; Shacham-Diamand Y
    Biosens Bioelectron; 2008 Jun; 23(11):1631-6. PubMed ID: 18378440
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A microfluidic cell array with individually addressable culture chambers.
    Wang HY; Bao N; Lu C
    Biosens Bioelectron; 2008 Dec; 24(4):613-7. PubMed ID: 18635348
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cross-talk problem on a fluorescence multi-channel microfluidic chip system.
    Irawan R; Tjin SC; Yager P; Zhang D
    Biomed Microdevices; 2005 Sep; 7(3):205-11. PubMed ID: 16133808
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cytometry and velocimetry on a microfluidic chip using polyelectrolytic salt bridges.
    Chun H; Chung TD; Kim HC
    Anal Chem; 2005 Apr; 77(8):2490-5. PubMed ID: 15828785
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-throughput microfluidic system for long-term bacterial colony monitoring and antibiotic testing in zero-flow environments.
    Sun P; Liu Y; Sha J; Zhang Z; Tu Q; Chen P; Wang J
    Biosens Bioelectron; 2011 Jan; 26(5):1993-9. PubMed ID: 20880691
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A miniature porous aluminum oxide-based flow-cell for online water quality monitoring using bacterial sensor cells.
    Yagur-Kroll S; Schreuder E; Ingham CJ; Heideman R; Rosen R; Belkin S
    Biosens Bioelectron; 2015 Feb; 64():625-32. PubMed ID: 25441411
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optical chromatography using a photonic crystal fiber with on-chip fluorescence excitation.
    Ashok PC; Marchington RF; Mthunzi P; Krauss TF; Dholakia K
    Opt Express; 2010 Mar; 18(6):6396-407. PubMed ID: 20389663
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynamic microarray system with gentle retrieval mechanism for cell-encapsulating hydrogel beads.
    Tan WH; Takeuchi S
    Lab Chip; 2008 Feb; 8(2):259-66. PubMed ID: 18231664
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multiple wavelength fluorescence enhancement on glass substrates for biochip and cell analyses.
    Fouqué B; Schaack B; Obeïd P; Combe S; Gétin S; Barritault P; Chaton P; Chatelain F
    Biosens Bioelectron; 2005 May; 20(11):2335-40. PubMed ID: 15797336
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.