These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
98 related articles for article (PubMed ID: 20664852)
1. Acid-catalysed chlorine transfer from N-chloramines to iodide ion: experimental evidence for a predicted change in mechanism. Calvo P; Crugeiras J; Ríos A Org Biomol Chem; 2010 Sep; 8(18):4137-42. PubMed ID: 20664852 [TBL] [Abstract][Full Text] [Related]
2. Nucleophilic substitution reactions of N-chloramines: evidence for a change in mechanism with increasing nucleophile reactivity. Calvo P; Crugeiras J; Ríos A; Ríos MA J Org Chem; 2007 Apr; 72(9):3171-8. PubMed ID: 17397221 [TBL] [Abstract][Full Text] [Related]
3. Kinetic and thermodynamic barriers to chlorine transfer between amines in aqueous solution. Calvo P; Crugeiras J; Ríos A J Org Chem; 2009 Aug; 74(15):5381-9. PubMed ID: 19555092 [TBL] [Abstract][Full Text] [Related]
4. Oxidation of NADH by chloramines and chloramides and its activation by iodide and by tertiary amines. Prütz WA; Kissner R; Koppenol WH Arch Biochem Biophys; 2001 Sep; 393(2):297-307. PubMed ID: 11556817 [TBL] [Abstract][Full Text] [Related]
5. Kinetics and mechanism of hydration of o-thioquinone methide in aqueous solution. Rate-determining protonation of sulfur. Chiang Y; Kresge AJ; Sadovski O; Zhan HQ J Org Chem; 2005 Mar; 70(5):1643-6. PubMed ID: 15730283 [TBL] [Abstract][Full Text] [Related]
6. Mechanism of electrophilic chlorination: experimental determination of a geometrical requirement for chlorine transfer by the endocyclic restriction test. Lee SJ; Terrazas MS; Pippel DJ; Beak P J Am Chem Soc; 2003 Jun; 125(24):7307-12. PubMed ID: 12797805 [TBL] [Abstract][Full Text] [Related]
7. The formation of halogen-specific TOX from chlorination and chloramination of natural organic matter isolates. Kristiana I; Gallard H; Joll C; Croué JP Water Res; 2009 Sep; 43(17):4177-86. PubMed ID: 19616274 [TBL] [Abstract][Full Text] [Related]
8. Kinetics of the hydride reduction of an NAD(+) analogue by isopropyl alcohol in aqueous and acetonitrile solutions: solvent effects, deuterium isotope effects, and mechanism. Lu Y; Qu F; Zhao Y; Small AM; Bradshaw J; Moore B J Org Chem; 2009 Sep; 74(17):6503-10. PubMed ID: 19670893 [TBL] [Abstract][Full Text] [Related]
9. Multiple isotope effect study of the acid-catalyzed hydrolysis of formamide. Marlier JF; Campbell E; Lai C; Weber M; Reinhardt LA; Cleland WW J Org Chem; 2006 May; 71(10):3829-36. PubMed ID: 16674056 [TBL] [Abstract][Full Text] [Related]
10. Chlorine transfer between glycine, taurine, and histamine: reaction rates and impact on cellular reactivity. Peskin AV; Midwinter RG; Harwood DT; Winterbourn CC Free Radic Biol Med; 2004 Nov; 37(10):1622-30. PubMed ID: 15477013 [TBL] [Abstract][Full Text] [Related]
11. The aminolysis of N-aroyl beta-lactams occurs by a concerted mechanism. Tsang WY; Ahmed N; Page MI Org Biomol Chem; 2007 Feb; 5(3):485-93. PubMed ID: 17252131 [TBL] [Abstract][Full Text] [Related]
12. Determining the transition-state structure for different SN2 reactions using experimental nucleophile carbon and secondary alpha-deuterium kinetic isotope effects and theory. Westaway KC; Fang YR; MacMillar S; Matsson O; Poirier RA; Islam SM J Phys Chem A; 2008 Oct; 112(41):10264-73. PubMed ID: 18816038 [TBL] [Abstract][Full Text] [Related]
13. A new insight into using chlorine leaving group and nucleophile carbon kinetic isotope effects to determine substituent effects on the structure of SN2 transition states. Westaway KC; Fang YR; MacMillar S; Matsson O; Poirier RA; Islam SM J Phys Chem A; 2007 Aug; 111(33):8110-20. PubMed ID: 17663535 [TBL] [Abstract][Full Text] [Related]
14. Formation of organic chloramines during water disinfection: chlorination versus chloramination. Lee W; Westerhoff P Water Res; 2009 May; 43(8):2233-9. PubMed ID: 19269665 [TBL] [Abstract][Full Text] [Related]
15. Catalysis of the beta-elimination of HF from isomeric 2-fluoroethylpyridines and 1-methyl-2-fluoroethylpyridinium salts. Proton-activating factors and methyl-activating factors as a mechanistic test to distinguish between concerted E2 and E1cb irreversible mechanisms. Alunni S; Laureti V; Ottavi L; Ruzziconi R J Org Chem; 2003 Feb; 68(3):718-25. PubMed ID: 12558390 [TBL] [Abstract][Full Text] [Related]
16. Hydride reduction of NAD+ analogues by isopropyl alcohol: kinetics, deuterium isotope effects and mechanism. Lu Y; Qu F; Moore B; Endicott D; Kuester W J Org Chem; 2008 Jul; 73(13):4763-70. PubMed ID: 18543993 [TBL] [Abstract][Full Text] [Related]
17. Kinetic and chemical mechanisms of the fabG-encoded Streptococcus pneumoniae beta-ketoacyl-ACP reductase. Patel MP; Liu WS; West J; Tew D; Meek TD; Thrall SH Biochemistry; 2005 Dec; 44(50):16753-65. PubMed ID: 16342966 [TBL] [Abstract][Full Text] [Related]
18. The kinetics and mechanism of the acid-catalysed detritylation of nucleotides in non-aqueous solution. Russell MA; Laws AP; Atherton JH; Page MI Org Biomol Chem; 2009 Jan; 7(1):52-7. PubMed ID: 19081945 [TBL] [Abstract][Full Text] [Related]
19. Hypochlorous acid-mediated protein oxidation: how important are chloramine transfer reactions and protein tertiary structure? Pattison DI; Hawkins CL; Davies MJ Biochemistry; 2007 Aug; 46(34):9853-64. PubMed ID: 17676767 [TBL] [Abstract][Full Text] [Related]
20. Disinfection effectiveness of organic chloramines, investigating the effect of pH. Amiri F; Mesquita MM; Andrews SA Water Res; 2010 Feb; 44(3):845-53. PubMed ID: 19945732 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]