These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
294 related articles for article (PubMed ID: 20665103)
1. Cytokeratin 5 positive cells represent a steroid receptor negative and therapy resistant subpopulation in luminal breast cancers. Kabos P; Haughian JM; Wang X; Dye WW; Finlayson C; Elias A; Horwitz KB; Sartorius CA Breast Cancer Res Treat; 2011 Jul; 128(1):45-55. PubMed ID: 20665103 [TBL] [Abstract][Full Text] [Related]
2. Modeling luminal breast cancer heterogeneity: combination therapy to suppress a hormone receptor-negative, cytokeratin 5-positive subpopulation in luminal disease. Knox AJ; Scaling AL; Pinto MP; Bliesner BS; Haughian JM; Abdel-Hafiz HA; Horwitz KB Breast Cancer Res; 2014 Aug; 16(4):418. PubMed ID: 25116921 [TBL] [Abstract][Full Text] [Related]
3. Steroid induction of therapy-resistant cytokeratin-5-positive cells in estrogen receptor-positive breast cancer through a BCL6-dependent mechanism. Goodman CR; Sato T; Peck AR; Girondo MA; Yang N; Liu C; Yanac AF; Kovatich AJ; Hooke JA; Shriver CD; Mitchell EP; Hyslop T; Rui H Oncogene; 2016 Mar; 35(11):1373-85. PubMed ID: 26096934 [TBL] [Abstract][Full Text] [Related]
4. Luminal breast cancer metastases and tumor arousal from dormancy are promoted by direct actions of estradiol and progesterone on the malignant cells. Ogba N; Manning NG; Bliesner BS; Ambler SK; Haughian JM; Pinto MP; Jedlicka P; Joensuu K; Heikkilä P; Horwitz KB Breast Cancer Res; 2014 Dec; 16(6):489. PubMed ID: 25475897 [TBL] [Abstract][Full Text] [Related]
5. A high-content assay to identify small-molecule modulators of a cancer stem cell population in luminal breast cancer. Yoo BH; Axlund SD; Kabos P; Reid BG; Schaack J; Sartorius CA; LaBarbera DV J Biomol Screen; 2012 Oct; 17(9):1211-20. PubMed ID: 22751729 [TBL] [Abstract][Full Text] [Related]
6. Progesterone-inducible cytokeratin 5-positive cells in luminal breast cancer exhibit progenitor properties. Axlund SD; Yoo BH; Rosen RB; Schaack J; Kabos P; Labarbera DV; Sartorius CA Horm Cancer; 2013 Feb; 4(1):36-49. PubMed ID: 23184698 [TBL] [Abstract][Full Text] [Related]
7. Development of resistance to targeted therapies transforms the clinically associated molecular profile subtype of breast tumor xenografts. Creighton CJ; Massarweh S; Huang S; Tsimelzon A; Hilsenbeck SG; Osborne CK; Shou J; Malorni L; Schiff R Cancer Res; 2008 Sep; 68(18):7493-501. PubMed ID: 18794137 [TBL] [Abstract][Full Text] [Related]
8. Alteration of Y-box binding protein-1 expression modifies the response to endocrine therapy in estrogen receptor-positive breast cancer. Ito T; Kamijo S; Izumi H; Kohno K; Amano J; Ito K Breast Cancer Res Treat; 2012 May; 133(1):145-59. PubMed ID: 21863258 [TBL] [Abstract][Full Text] [Related]
9. Rare steroid receptor-negative basal-like tumorigenic cells in luminal subtype human breast cancer xenografts. Horwitz KB; Dye WW; Harrell JC; Kabos P; Sartorius CA Proc Natl Acad Sci U S A; 2008 Apr; 105(15):5774-9. PubMed ID: 18391223 [TBL] [Abstract][Full Text] [Related]
10. Long Non-Coding RNA H19 Acts as an Estrogen Receptor Modulator that is Required for Endocrine Therapy Resistance in ER+ Breast Cancer Cells. Basak P; Chatterjee S; Bhat V; Su A; Jin H; Lee-Wing V; Liu Q; Hu P; Murphy LC; Raouf A Cell Physiol Biochem; 2018; 51(4):1518-1532. PubMed ID: 30497079 [TBL] [Abstract][Full Text] [Related]
11. Acquired resistance to endocrine treatments is associated with tumor-specific molecular changes in patient-derived luminal breast cancer xenografts. Cottu P; Bièche I; Assayag F; El Botty R; Chateau-Joubert S; Thuleau A; Bagarre T; Albaud B; Rapinat A; Gentien D; de la Grange P; Sibut V; Vacher S; Hatem R; Servely JL; Fontaine JJ; Decaudin D; Pierga JY; Roman-Roman S; Marangoni E Clin Cancer Res; 2014 Aug; 20(16):4314-25. PubMed ID: 24947930 [TBL] [Abstract][Full Text] [Related]
12. NPY1R exerts inhibitory action on estradiol-stimulated growth and predicts endocrine sensitivity and better survival in ER-positive breast cancer. Bhat R; Thangavel H; Abdulkareem NM; Vasaikar S; De Angelis C; Bae L; Cataldo ML; Nanda S; Fu X; Zhang B; Schiff R; Trivedi MV Sci Rep; 2022 Feb; 12(1):1972. PubMed ID: 35121782 [TBL] [Abstract][Full Text] [Related]
13. Maintenance of hormone responsiveness in luminal breast cancers by suppression of Notch. Haughian JM; Pinto MP; Harrell JC; Bliesner BS; Joensuu KM; Dye WW; Sartorius CA; Tan AC; Heikkilä P; Perou CM; Horwitz KB Proc Natl Acad Sci U S A; 2012 Feb; 109(8):2742-7. PubMed ID: 21969591 [TBL] [Abstract][Full Text] [Related]
14. Longitudinal Molecular Imaging of Progesterone Receptor Reveals Early Differential Response to Endocrine Therapy in Breast Cancer with an Activating Kumar M; Salem K; Jeffery JJ; Yan Y; Mahajan AM; Fowler AM J Nucl Med; 2021 Apr; 62(4):500-506. PubMed ID: 32859700 [TBL] [Abstract][Full Text] [Related]
15. Tamoxifen resistance alters sensitivity to 5-fluorouracil in a subset of estrogen receptor-positive breast cancer. Watanabe T; Oba T; Tanimoto K; Shibata T; Kamijo S; Ito KI PLoS One; 2021; 16(6):e0252822. PubMed ID: 34101751 [TBL] [Abstract][Full Text] [Related]
16. Cross talk between progesterone receptors and retinoic acid receptors in regulation of cytokeratin 5-positive breast cancer cells. Fettig LM; McGinn O; Finlay-Schultz J; LaBarbera DV; Nordeen SK; Sartorius CA Oncogene; 2017 Nov; 36(44):6074-6084. PubMed ID: 28692043 [TBL] [Abstract][Full Text] [Related]
17. Characterization of new estrogen receptor destabilizing compounds: effects on estrogen-sensitive and tamoxifen-resistant breast cancer. Hoffmann J; Bohlmann R; Heinrich N; Hofmeister H; Kroll J; Künzer H; Lichtner RB; Nishino Y; Parczyk K; Sauer G; Gieschen H; Ulbrich HF; Schneider MR J Natl Cancer Inst; 2004 Feb; 96(3):210-8. PubMed ID: 14759988 [TBL] [Abstract][Full Text] [Related]
18. Prolactin suppresses a progestin-induced CK5-positive cell population in luminal breast cancer through inhibition of progestin-driven BCL6 expression. Sato T; Tran TH; Peck AR; Girondo MA; Liu C; Goodman CR; Neilson LM; Freydin B; Chervoneva I; Hyslop T; Kovatich AJ; Hooke JA; Shriver CD; Fuchs SY; Rui H Oncogene; 2014 Apr; 33(17):2215-24. PubMed ID: 23708665 [TBL] [Abstract][Full Text] [Related]
19. Breast cancer molecular class ERBB2: preponderance of tumors with apocrine differentiation and expression of basal phenotype markers CK5, CK5/6, and EGFR. Bhargava R; Beriwal S; Striebel JM; Dabbs DJ Appl Immunohistochem Mol Morphol; 2010 Mar; 18(2):113-8. PubMed ID: 19801938 [TBL] [Abstract][Full Text] [Related]
20. Fulvestrant inhibits growth of triple negative breast cancer and synergizes with tamoxifen in ERα positive breast cancer by up-regulation of ERβ. Mishra AK; Abrahamsson A; Dabrosin C Oncotarget; 2016 Aug; 7(35):56876-56888. PubMed ID: 27486755 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]