These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

224 related articles for article (PubMed ID: 20665254)

  • 1. Disruption of saccadic adaptation with repetitive transcranial magnetic stimulation of the posterior cerebellum in humans.
    Jenkinson N; Miall RC
    Cerebellum; 2010 Dec; 9(4):548-55. PubMed ID: 20665254
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transcranial magnetic stimulation and motor plasticity in human lateral cerebellum: dual effect on saccadic adaptation.
    Panouillères M; Neggers SF; Gutteling TP; Salemme R; van der Stigchel S; van der Geest JN; Frens MA; Pélisson D
    Hum Brain Mapp; 2012 Jul; 33(7):1512-25. PubMed ID: 21692144
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The role of the posterior cerebellum in saccadic adaptation: a transcranial direct current stimulation study.
    Panouillères MT; Miall RC; Jenkinson N
    J Neurosci; 2015 Apr; 35(14):5471-9. PubMed ID: 25855165
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transcranial magnetic stimulation over the posterior cerebellum during visually guided saccades in man.
    Hashimoto M; Ohtsuka K
    Brain; 1995 Oct; 118 ( Pt 5)():1185-93. PubMed ID: 7496779
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cerebellar contributions to the processing of saccadic errors.
    van Broekhoven PC; Schraa-Tam CK; van der Lugt A; Smits M; Frens MA; van der Geest JN
    Cerebellum; 2009 Sep; 8(3):403-15. PubMed ID: 19472026
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Functional adaptation of reactive saccades in humans: a PET study.
    Desmurget M; Pélisson D; Grethe JS; Alexander GE; Urquizar C; Prablanc C; Grafton ST
    Exp Brain Res; 2000 May; 132(2):243-59. PubMed ID: 10853949
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transcranial magnetic stimulation over the posterior cerebellum during smooth pursuit eye movements in man.
    Ohtsuka K; Enoki T
    Brain; 1998 Mar; 121 ( Pt 3)():429-35. PubMed ID: 9549519
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effect of transcranial magnetic stimulation over the cerebellum on the synkinesis of coordinated eye and head movements.
    Nagel M; Zangemeister WH
    J Neurol Sci; 2003 Sep; 213(1-2):35-45. PubMed ID: 12873753
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A differential role for the posterior cerebellum in the adaptive control of convergence eye movements.
    Erkelens IM; Bobier WR; Macmillan AC; Maione NL; Martin Calderon C; Patterson H; Thompson B
    Brain Stimul; 2020; 13(1):215-228. PubMed ID: 31427273
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transcranial magnetic stimulation over the cerebellum and eye movements: state of the art.
    Colnaghi S; Ramat S; D'Angelo E; Versino M
    Funct Neurol; 2010; 25(3):165-71. PubMed ID: 21232213
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Involvement of Purkinje cells in evoking saccadic eye movements by microstimulation of the posterior cerebellar vermis of monkeys.
    Noda H; Fujikado T
    J Neurophysiol; 1987 May; 57(5):1247-61. PubMed ID: 3585467
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A role for the parietal cortex in sensorimotor adaptation of saccades.
    Panouillères M; Habchi O; Gerardin P; Salemme R; Urquizar C; Farne A; Pélisson D
    Cereb Cortex; 2014 Feb; 24(2):304-14. PubMed ID: 23042755
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Activation of cerebellar hemispheres in spatial memorization of saccadic eye movements: an fMRI study.
    Nitschke MF; Binkofski F; Buccino G; Posse S; Erdmann C; Kömpf D; Seitz RJ; Heide W
    Hum Brain Mapp; 2004 Jun; 22(2):155-64. PubMed ID: 15108303
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Complex spike activity of purkinje cells in the oculomotor vermis during behavioral adaptation of monkey saccades.
    Soetedjo R; Fuchs AF
    J Neurosci; 2006 Jul; 26(29):7741-55. PubMed ID: 16855102
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Saccade adaptation abnormalities implicate dysfunction of cerebellar-dependent learning mechanisms in Autism Spectrum Disorders (ASD).
    Mosconi MW; Luna B; Kay-Stacey M; Nowinski CV; Rubin LH; Scudder C; Minshew N; Sweeney JA
    PLoS One; 2013; 8(5):e63709. PubMed ID: 23704934
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characteristics of responses of Golgi cells and mossy fibers to eye saccades and saccadic adaptation recorded from the posterior vermis of the cerebellum.
    Prsa M; Dash S; Catz N; Dicke PW; Thier P
    J Neurosci; 2009 Jan; 29(1):250-62. PubMed ID: 19129401
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Saccadic adaptation in Chiari type II malformation.
    Salman MS; Sharpe JA; Eizenman M; Lillakas L; To T; Westall C; Steinbach MJ; Dennis M
    Can J Neurol Sci; 2006 Nov; 33(4):372-8. PubMed ID: 17168162
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Changes in simple spike activity of some Purkinje cells in the oculomotor vermis during saccade adaptation are appropriate to participate in motor learning.
    Kojima Y; Soetedjo R; Fuchs AF
    J Neurosci; 2010 Mar; 30(10):3715-27. PubMed ID: 20220005
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of lesions of the oculomotor vermis on eye movements in primate: saccades.
    Takagi M; Zee DS; Tamargo RJ
    J Neurophysiol; 1998 Oct; 80(4):1911-31. PubMed ID: 9772249
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The characteristics and neuronal substrate of saccadic eye movement plasticity.
    Hopp JJ; Fuchs AF
    Prog Neurobiol; 2004 Jan; 72(1):27-53. PubMed ID: 15019175
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.