These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

61 related articles for article (PubMed ID: 20665346)

  • 1. Feedforward control strategies of subjects with transradial amputation in planar reaching.
    Metzger AJ; Dromerick AW; Schabowsky CN; Holley RJ; Monroe B; Lum PS
    J Rehabil Res Dev; 2010; 47(3):201-11. PubMed ID: 20665346
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of inter-joint coordination strategies during activities of daily living with prosthetic and anatomical limbs.
    Lee C; Gates DH
    Hum Mov Sci; 2024 Aug; 96():103228. PubMed ID: 38761512
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lateralization of motor adaptation reveals independence in control of trajectory and steady-state position.
    Duff SV; Sainburg RL
    Exp Brain Res; 2007 Jun; 179(4):551-61. PubMed ID: 17171336
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Joint speed feedback improves myoelectric prosthesis adaptation after perturbed reaches in non amputees.
    Earley EJ; Johnson RE; Sensinger JW; Hargrove LJ
    Sci Rep; 2021 Mar; 11(1):5158. PubMed ID: 33664421
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The symmetry of interlimb transfer depends on workspace locations.
    Wang J; Sainburg RL
    Exp Brain Res; 2006 Apr; 170(4):464-71. PubMed ID: 16328262
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A novel approach for predicting usability of upper limb prostheses.
    Park J; Zahabi M; Huang H; Benden M
    Appl Ergon; 2024 Oct; 120():104344. PubMed ID: 38991493
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A training platform for many-dimensional prosthetic devices using a virtual reality environment.
    Putrino D; Wong YT; Weiss A; Pesaran B
    J Neurosci Methods; 2015 Apr; 244():68-77. PubMed ID: 24726625
    [TBL] [Abstract][Full Text] [Related]  

  • 8. IMU Sensors Measurements Towards the Development of Novel Prosthetic Arm Control Strategies.
    Galviati R; Boccardo N; Canepa M; Di Domenico D; Marinelli A; Frigo CA; Laffranchi M; de Michieli L
    IEEE Int Conf Rehabil Robot; 2023 Sep; 2023():1-6. PubMed ID: 37941218
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Realizing Upper Extremity Bionic Limbs: Leveraging Neuroprosthetic Control Strategies.
    Ganesh Kumar N; Chestek CA; Cederna PS; Kung TA
    Plast Reconstr Surg; 2023 Nov; ():. PubMed ID: 37927033
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Perspectives on the comparative benefits of body-powered and myoelectric upper limb prostheses.
    Engdahl SM; Gonzalez MA; Lee C; Gates DH
    J Neuroeng Rehabil; 2024 Aug; 21(1):138. PubMed ID: 39118106
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Using principles of motor control to analyze performance of human machine interfaces.
    Patwardhan S; Gladhill KA; Joiner WM; Schofield JS; Lee BS; Sikdar S
    Sci Rep; 2023 Aug; 13(1):13273. PubMed ID: 37582852
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Using Principles of Motor Control to Analyze Performance of Human Machine Interfaces.
    Patwardhan S; Gladhill KA; Joiner WM; Schofield JS; Sikdar S
    Res Sq; 2023 May; ():. PubMed ID: 37292730
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Measurement of Functional Use in Upper Extremity Prosthetic Devices Using Wearable Sensors and Machine Learning.
    Bochniewicz EM; Emmer G; Dromerick AW; Barth J; Lum PS
    Sensors (Basel); 2023 Mar; 23(6):. PubMed ID: 36991822
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of an interphalangeal-joint prosthetic hand in trans-radial prosthesis users.
    Sutthison N; Sasaki K; Guerra G; Chaisumritchoke S; Niamsang W; Charatrungolan T
    Ann Med; 2023 Dec; 55(1):447-455. PubMed ID: 36644976
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Kinematic analysis of impairments and compensatory motor behavior during prosthetic grasping in below-elbow amputees.
    Touillet A; Gouzien A; Badin M; Herbe P; Martinet N; Jarrassé N; Roby-Brami A
    PLoS One; 2022; 17(11):e0277917. PubMed ID: 36399487
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Agonist-antagonist muscle strain in the residual limb preserves motor control and perception after amputation.
    Song H; Israel EA; Gutierrez-Arango S; Teng AC; Srinivasan SS; Freed LE; Herr HM
    Commun Med (Lond); 2022; 2():97. PubMed ID: 35942078
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Partial-Hand Prosthesis Users Show Improved Reach-to-Grasp Behaviour Compared to Transradial Prosthesis Users with Increased Task Complexity.
    Alterman BL; Keeton E; Ali S; Binkley K; Hendrix W; Lee PJ; Wang S; Kling J; Johnson JT; Wheaton LA
    J Mot Behav; 2022; 54(6):706-718. PubMed ID: 35485303
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Improving internal model strength and performance of prosthetic hands using augmented feedback.
    Shehata AW; Engels LF; Controzzi M; Cipriani C; Scheme EJ; Sensinger JW
    J Neuroeng Rehabil; 2018 Jul; 15(1):70. PubMed ID: 30064477
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tactile feedback is an effective instrument for the training of grasping with a prosthesis at low- and medium-force levels.
    De Nunzio AM; Dosen S; Lemling S; Markovic M; Schweisfurth MA; Ge N; Graimann B; Falla D; Farina D
    Exp Brain Res; 2017 Aug; 235(8):2547-2559. PubMed ID: 28550423
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 4.