BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 20665605)

  • 1. Proteomic analysis of urine in rats chronically exposed to fluoride.
    Kobayashi CA; Leite Ade L; da Silva TL; dos Santos LD; Nogueira FC; Santos KS; de Oliveira RC; Palma MS; Domont GB; Buzalaf MA
    J Biochem Mol Toxicol; 2011; 25(1):8-14. PubMed ID: 20665605
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Proteomic analysis of kidney in rats chronically exposed to fluoride.
    Kobayashi CA; Leite AL; Silva TL; Santos LD; Nogueira FC; Oliveira RC; Palma MS; Domont GB; Buzalaf MA
    Chem Biol Interact; 2009 Jul; 180(2):305-11. PubMed ID: 19497429
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Proteomics analysis of liver samples from puffer fish Takifugu rubripes exposed to excessive fluoride: an insight into molecular response to fluorosis.
    Lu J; Zheng J; Liu H; Li J; Xu Q; Chen K
    J Biochem Mol Toxicol; 2010; 24(1):21-8. PubMed ID: 20146379
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Proteomic analysis of brain proteins of rats exposed to high fluoride and low iodine.
    Ge Y; Niu R; Zhang J; Wang J
    Arch Toxicol; 2011 Jan; 85(1):27-33. PubMed ID: 20364248
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Proteomic analysis of osteoblasts exposed to fluoride in vitro.
    Xu H; Jing L; Li GS
    Biol Trace Elem Res; 2008; 123(1-3):91-7. PubMed ID: 18197394
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparative proteomics analysis of midgut samples from Takifugu rubripes exposed to excessive fluoride: initial molecular response to fluorosis.
    Lu J; Xu Q; Chen H; Li J; Chen K
    Toxicol Mech Methods; 2011 Jul; 21(6):444-52. PubMed ID: 21466417
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Proteomic analysis of kidney in fluoride-treated rat.
    Xu H; Hu LS; Chang M; Jing L; Zhang XY; Li GS
    Toxicol Lett; 2005 Dec; 160(1):69-75. PubMed ID: 16043314
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparative proteomics analysis of cardiac muscle samples from pufferfish Takifugu rubripes exposed to excessive fluoride: initial molecular response to fluorosis.
    Lu J; Xu Q; Zheng J; Liu H; Li J; Chen K
    Toxicol Mech Methods; 2009 Sep; 19(6-7):468-75. PubMed ID: 19778249
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparative proteomics of kidney samples from puffer fish Takifugu rubripes exposed to excessive fluoride: an insight into molecular response to fluorosis.
    Lu J; Chen H; Xu Q; Zheng J; Liu H; Li J; Chen K
    Toxicol Mech Methods; 2010 Jul; 20(6):345-54. PubMed ID: 20528257
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Proteomic alteration in lung tissue of rats exposed to cigarette smoke.
    Zhang S; Xu N; Nie J; Dong L; Li J; Tong J
    Toxicol Lett; 2008 May; 178(3):191-6. PubMed ID: 18467043
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Proteomic analysis of lung tissue of rats exposed to cigarette smoke and radon.
    Xu NY; Zhang SP; Dong L; Nie JH; Tong J
    J Toxicol Environ Health A; 2009; 72(11-12):752-8. PubMed ID: 19492239
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biomarker discovery for kidney diseases by mass spectrometry.
    Niwa T
    J Chromatogr B Analyt Technol Biomed Life Sci; 2008 Jul; 870(2):148-53. PubMed ID: 18024247
    [TBL] [Abstract][Full Text] [Related]  

  • 13. NTP technical report on the toxicity studies of Dibutyl Phthalate (CAS No. 84-74-2) Administered in Feed to F344/N Rats and B6C3F1 Mice.
    Marsman D
    Toxic Rep Ser; 1995 Apr; 30():1-G5. PubMed ID: 12209194
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Proteomic analysis reveals changes in the hippocampus protein pattern of rats exposed to dietary zinc deficiency.
    Liu J; Jiang Y; Huang C; Fang H; Fang H; Pang W
    Electrophoresis; 2010 Apr; 31(8):1302-10. PubMed ID: 20309891
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In-Gel 18O labeling for improved identification of proteins from 2-DE Gel spots in comparative proteomic experiments.
    Broedel O; Krause E; Stephanowitz H; Schuemann M; Eravci M; Weist S; Brunkau C; Wittke J; Eravci S; Baumgartner A
    J Proteome Res; 2009 Jul; 8(7):3771-7. PubMed ID: 19425618
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Serial changes in urinary proteome profile of membranous nephropathy: implications for pathophysiology and biomarker discovery.
    Ngai HH; Sit WH; Jiang PP; Xu RJ; Wan JM; Thongboonkerd V
    J Proteome Res; 2006 Nov; 5(11):3038-47. PubMed ID: 17081055
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Proteomics-based identification of a group of apoptosis-related proteins and biomarkers in gastric cancer.
    Bai Z; Ye Y; Liang B; Xu F; Zhang H; Zhang Y; Peng J; Shen D; Cui Z; Zhang Z; Wang S
    Int J Oncol; 2011 Feb; 38(2):375-83. PubMed ID: 21165559
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Profiling of myelin proteins by 2D-gel electrophoresis and multidimensional liquid chromatography coupled to MALDI TOF-TOF mass spectrometry.
    Vanrobaeys F; Van Coster R; Dhondt G; Devreese B; Van Beeumen J
    J Proteome Res; 2005; 4(6):2283-93. PubMed ID: 16335977
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Proteomic identification of oxidatively modified retinal proteins in a chronic pressure-induced rat model of glaucoma.
    Tezel G; Yang X; Cai J
    Invest Ophthalmol Vis Sci; 2005 Sep; 46(9):3177-87. PubMed ID: 16123417
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Myocardial preconditioning and remote renal preconditioning--identifying a protective factor using proteomic methods?
    Lang SC; Elsässer A; Scheler C; Vetter S; Tiefenbacher CP; Kübler W; Katus HA; Vogt AM
    Basic Res Cardiol; 2006 Mar; 101(2):149-58. PubMed ID: 16283592
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.