BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

253 related articles for article (PubMed ID: 20665678)

  • 21. In vivo evaluation of highly macroporous ceramic scaffolds for bone tissue engineering.
    Teixeira S; Fernandes H; Leusink A; van Blitterswijk C; Ferraz MP; Monteiro FJ; de Boer J
    J Biomed Mater Res A; 2010 May; 93(2):567-75. PubMed ID: 19591232
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Bone healing and migration of cord blood-derived stem cells into a critical size femoral defect after xenotransplantation.
    Jäger M; Degistirici O; Knipper A; Fischer J; Sager M; Krauspe R
    J Bone Miner Res; 2007 Aug; 22(8):1224-33. PubMed ID: 17451370
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Bone regeneration using hyaluronic acid-based hydrogel with bone morphogenic protein-2 and human mesenchymal stem cells.
    Kim J; Kim IS; Cho TH; Lee KB; Hwang SJ; Tae G; Noh I; Lee SH; Park Y; Sun K
    Biomaterials; 2007 Apr; 28(10):1830-7. PubMed ID: 17208295
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The effect of platelet-rich plasma on healing in critical-size long-bone defects.
    Kasten P; Vogel J; Geiger F; Niemeyer P; Luginbühl R; Szalay K
    Biomaterials; 2008 Oct; 29(29):3983-92. PubMed ID: 18614227
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Investigation of a thermoplastic polymeric carrier for bone tissue engineering using allogeneic mesenchymal stem cells in granular scaffolds.
    Mylonas D; Vidal MD; De Kok IJ; Moriarity JD; Cooper LF
    J Prosthodont; 2007; 16(6):421-30. PubMed ID: 17683475
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Cross-linked collagen-chondroitin sulfate-hyaluronic acid imitating extracellular matrix as scaffold for dermal tissue engineering.
    Wang W; Zhang M; Lu W; Zhang X; Ma D; Rong X; Yu C; Jin Y
    Tissue Eng Part C Methods; 2010 Apr; 16(2):269-79. PubMed ID: 19530938
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Preparation and biocompatibility evaluation of apatite/wollastonite-derived porous bioactive glass ceramic scaffolds.
    Zhang H; Ye XJ; Li JS
    Biomed Mater; 2009 Aug; 4(4):045007. PubMed ID: 19605959
    [TBL] [Abstract][Full Text] [Related]  

  • 28. In vitro cartilage tissue engineering with 3D porous aqueous-derived silk scaffolds and mesenchymal stem cells.
    Wang Y; Kim UJ; Blasioli DJ; Kim HJ; Kaplan DL
    Biomaterials; 2005 Dec; 26(34):7082-94. PubMed ID: 15985292
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Cell-scaffold transplant of hydrogel seeded with rat bone marrow progenitors for bone regeneration.
    Ben-David D; Kizhner TA; Kohler T; Müller R; Livne E; Srouji S
    J Craniomaxillofac Surg; 2011 Jul; 39(5):364-71. PubMed ID: 20947366
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Analysis of mesenchymal stem cells grown on a three-dimensional HYAFF 11-based prototype ligament scaffold.
    Cristino S; Grassi F; Toneguzzi S; Piacentini A; Grigolo B; Santi S; Riccio M; Tognana E; Facchini A; Lisignoli G
    J Biomed Mater Res A; 2005 Jun; 73(3):275-83. PubMed ID: 15789422
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Biocompatibility evaluation of nano-rod hydroxyapatite/gelatin coated with nano-HAp as a novel scaffold using mesenchymal stem cells.
    Zandi M; Mirzadeh H; Mayer C; Urch H; Eslaminejad MB; Bagheri F; Mivehchi H
    J Biomed Mater Res A; 2010 Mar; 92(4):1244-55. PubMed ID: 19322878
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Biochemical and molecular characterization of hepatocyte-like cells derived from human bone marrow mesenchymal stem cells on a novel three-dimensional biocompatible nanofibrous scaffold.
    Kazemnejad S; Allameh A; Soleimani M; Gharehbaghian A; Mohammadi Y; Amirizadeh N; Jazayery M
    J Gastroenterol Hepatol; 2009 Feb; 24(2):278-87. PubMed ID: 18752558
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Three-dimensional, bioactive, biodegradable, polymer-bioactive glass composite scaffolds with improved mechanical properties support collagen synthesis and mineralization of human osteoblast-like cells in vitro.
    Lu HH; El-Amin SF; Scott KD; Laurencin CT
    J Biomed Mater Res A; 2003 Mar; 64(3):465-74. PubMed ID: 12579560
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Optimized conditions for mesenchymal stem cells to differentiate into osteoblasts on a collagen/hydroxyapatite matrix.
    Prosecká E; Rampichová M; Vojtová L; Tvrdík D; Melčáková S; Juhasová J; Plencner M; Jakubová R; Jančář J; Nečas A; Kochová P; Klepáček J; Tonar Z; Amler E
    J Biomed Mater Res A; 2011 Nov; 99(2):307-15. PubMed ID: 21858919
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Marrow-derived mesenchymal stem cells-directed bone regeneration in the dog mandible: a comparison between biphasic calcium phosphate and natural bone mineral.
    Jafarian M; Eslaminejad MB; Khojasteh A; Mashhadi Abbas F; Dehghan MM; Hassanizadeh R; Houshmand B
    Oral Surg Oral Med Oral Pathol Oral Radiol Endod; 2008 May; 105(5):e14-24. PubMed ID: 18442730
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Osteoarthritis treated with mesenchymal stem cells on hyaluronan-based scaffold in rabbit.
    Grigolo B; Lisignoli G; Desando G; Cavallo C; Marconi E; Tschon M; Giavaresi G; Fini M; Giardino R; Facchini A
    Tissue Eng Part C Methods; 2009 Dec; 15(4):647-58. PubMed ID: 19249964
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Allogenic peripheral blood derived mesenchymal stem cells (MSCs) enhance bone regeneration in rabbit ulna critical-sized bone defect model.
    Wan C; He Q; Li G
    J Orthop Res; 2006 Apr; 24(4):610-8. PubMed ID: 16514623
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Transplantation of mesenchymal stem cells cultured on biomatrix support induces repairing of digestive tract defects, in animal model.
    Sîrbu-Boeţi MP; Chivu M; Pâslaru LL; Efrimescu C; Herlea V; Pecheanu C; Moldovan L; Dragomir L; Bleotu C; Ciucur E; Vidulescu C; Vasilescu M; Boicea A; Mănoiu S; Ionescu MI; Popescu I
    Chirurgia (Bucur); 2009; 104(1):55-65. PubMed ID: 19388570
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Implantation of neural stem cells embedded in hyaluronic acid and collagen composite conduit promotes regeneration in a rabbit facial nerve injury model.
    Zhang H; Wei YT; Tsang KS; Sun CR; Li J; Huang H; Cui FZ; An YH
    J Transl Med; 2008 Nov; 6():67. PubMed ID: 18986538
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Cartilage regeneration using mesenchymal stem cells and a three-dimensional poly-lactic-glycolic acid (PLGA) scaffold.
    Uematsu K; Hattori K; Ishimoto Y; Yamauchi J; Habata T; Takakura Y; Ohgushi H; Fukuchi T; Sato M
    Biomaterials; 2005 Jul; 26(20):4273-9. PubMed ID: 15683651
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.