These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 20665757)

  • 21. Monodisperse alginate microcapsules with oil core generated from a microfluidic device.
    Ren PW; Ju XJ; Xie R; Chu LY
    J Colloid Interface Sci; 2010 Mar; 343(1):392-5. PubMed ID: 19963224
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Fabrication of discontinuous surface patterns within microfluidic channels using photodefinable vapor-based polymer coatings.
    Chen HY; Lahann J
    Anal Chem; 2005 Nov; 77(21):6909-14. PubMed ID: 16255589
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A practical interface for microfluidics and nanoelectrospray mass spectrometry.
    Freire SL; Yang H; Wheeler AR
    Electrophoresis; 2008 May; 29(9):1836-43. PubMed ID: 18393343
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Real-time monitoring of two-photon photopolymerization for use in fabrication of microfluidic devices.
    Stoneman M; Fox M; Zeng C; Raicu V
    Lab Chip; 2009 Mar; 9(6):819-27. PubMed ID: 19255664
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Microfluidic large-scale integration on a chip for mass production of monodisperse droplets and particles.
    Nisisako T; Torii T
    Lab Chip; 2008 Feb; 8(2):287-93. PubMed ID: 18231668
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Mechanical and chemical analysis of plasma and ultraviolet-ozone surface treatments for thermal bonding of polymeric microfluidic devices.
    Bhattacharyya A; Klapperich CM
    Lab Chip; 2007 Jul; 7(7):876-82. PubMed ID: 17594007
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Rapid microfabrication of solvent-resistant biocompatible microfluidic devices.
    Hung LH; Lin R; Lee AP
    Lab Chip; 2008 Jun; 8(6):983-7. PubMed ID: 18497921
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Fabrication improvements for thermoset polyester (TPE) microfluidic devices.
    Fiorini GS; Yim M; Jeffries GD; Schiro PG; Mutch SA; Lorenz RM; Chiu DT
    Lab Chip; 2007 Jul; 7(7):923-6. PubMed ID: 17594014
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A microfluidic platform for the synthesis of polymer and polymer-protein-based protocells.
    O'Callaghan JA; Kamat NP; Vargo KB; Chattaraj R; Lee D; Hammer DA
    Eur Phys J E Soft Matter; 2024 Jun; 47(6):37. PubMed ID: 38829453
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Monodisperse polymeric particles prepared by ink-jet printing: double emulsions, hydrogels and polymer mixtures.
    Böhmer MR; Steenbakkers JA; Chlon C
    Colloids Surf B Biointerfaces; 2010 Aug; 79(1):47-52. PubMed ID: 20413282
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Wafer-scale fabrication of glass-FEP-glass microfluidic devices for lipid bilayer experiments.
    Bomer JG; Prokofyev AV; van den Berg A; Le Gac S
    Lab Chip; 2014 Dec; 14(23):4461-4. PubMed ID: 25284632
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A microfluidic chip for formation and collection of emulsion droplets utilizing active pneumatic micro-choppers and micro-switches.
    Lai CW; Lin YH; Lee GB
    Biomed Microdevices; 2008 Oct; 10(5):749-56. PubMed ID: 18484177
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Microfluidic devices for size-dependent separation of liver cells.
    Yamada M; Kano K; Tsuda Y; Kobayashi J; Yamato M; Seki M; Okano T
    Biomed Microdevices; 2007 Oct; 9(5):637-45. PubMed ID: 17530413
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Multiple-channel emulsion chips utilizing pneumatic choppers for biotechnology applications.
    Lin YH; Chen CT; Huang LL; Lee GB
    Biomed Microdevices; 2007 Dec; 9(6):833-43. PubMed ID: 17577672
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Interfacial tension controlled W/O and O/W 2-phase flows in microchannel.
    Shui L; van den Berg A; Eijkel JC
    Lab Chip; 2009 Mar; 9(6):795-801. PubMed ID: 19255661
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Controlled formation of double-emulsion drops in sudden expansion channels.
    Kim SH; Kim B
    J Colloid Interface Sci; 2014 Feb; 415():26-31. PubMed ID: 24267326
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Electrokinetic protein preconcentration using a simple glass/poly(dimethylsiloxane) microfluidic chip.
    Kim SM; Burns MA; Hasselbrink EF
    Anal Chem; 2006 Jul; 78(14):4779-85. PubMed ID: 16841895
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Glass etching to bridge micro- and nanofluidics.
    Xu BY; Yan XN; Zhang JD; Xu JJ; Chen HY
    Lab Chip; 2012 Jan; 12(2):381-6. PubMed ID: 22068964
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Microcontact printing-based fabrication of digital microfluidic devices.
    Watson MW; Abdelgawad M; Ye G; Yonson N; Trottier J; Wheeler AR
    Anal Chem; 2006 Nov; 78(22):7877-85. PubMed ID: 17105183
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Microwave plasma treatment of polymer surface for irreversible sealing of microfluidic devices.
    Hui AY; Wang G; Lin B; Chan WT
    Lab Chip; 2005 Oct; 5(10):1173-7. PubMed ID: 16175276
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.